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Abstract For fast motion estimation (ME) in video

coding, many fast block matching ME algorithms are

proposed. Among these algorithms, Unsymmetrical-cross

Multi-grid-hexagon Search (UMHexagonS) algorithm can

be regarded as a distinguished representative. However, the

excellent rate-distortion (R-D) performance of UMHexa-

gonS comes at the cost of relatively high computational

complexity of the initial search point decision and the

hybrid search pattern. To tackle this disadvantage, a new

fast ME algorithm is proposed. An experiment is

performed to analyze the best motion vectors (MVs) dis-

tribution in natural video sequences. Based on the corre-

lations between spatial and temporal blocks as well as the

asymmetrical distribution of the best MVs in natural video

sequences, a small diamond search pattern and an asym-

metrical cross search pattern are jointly employed to locate

the best matching block. Experimental results demonstrate

that when compared to recently improved UMHexagonS,

the ME time can be reduced up to 38.70 % while with a

quite similar R-D performance as UMHexagonS. When

compared with the fast directional gradient descent search

(FDGDS), the ME time can be reduced up to 12.23 %,

while with a better R-D performance than FDGDS, 0.11 dB

BDPSNR increase and 2.14 % BDBitrate decrease. Espe-

cially, the proposed algorithm can work well in video

sequences with various motion activities and formats, and

is more suitable for real-time application.

Keywords Block matching algorithm � Asymmetrical

cross search pattern � Motion estimation � H.264/AVC �
Video coding

1 Introduction

H.264/AVC (advanced video coding) is the state-of-the-art

standard for video coding [1, 2]. Since H.264/AVC utilizes

a set of advanced video coding tools, such as variable

block-size (16 9 16, 16 9 8, 8 9 16, 8 9 8, 8 9 4,

4 9 8, 4 9 4) ME, multiple reference frames [3], R-D

optimization technique and so on, it significantly improves

the coding performance when compared with previous

video coding standards. However, the improvement is at

the cost of higher computational complexity. In [4], it has

been proved that the variable block-size ME consumes

70 % (one reference frame) � 90 % (five reference

frames) of the total encoding time of the H.264/AVC

encoder. This high computational burden limits the use of

H.264/AVC in real-time video coding.

In order to reduce the computational complexity of ME

process, many fast block matching ME algorithms have

been proposed. Based on the assumption that the block

matching error decreases monotonically in the search

window, these algorithms employ different search patterns
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(such as square search pattern [5–7], diamond search pat-

tern [8, 9], hexagon search pattern [9, 10, 20] and so on) to

locate the best matching block. To further reduce the

computational complexity of the block matching process,

different search steps (like three steps [5], four steps [6]

and so on) are utilized to reduce the number of search

points. In [5] and [6], a square search pattern is used with

three steps and four steps, respectively. They are named

three-step search (TSS) and four-step search (FSS). The

initial search step size of TSS and FSS are corresponding to

dw=2e and dw=4e, respectively, where d�e denotes the

ceiling operation. w represents the search range. In [7], a

square search pattern with eight points is performed on the

initial search point. If the best point is found, then the same

square search pattern is performed on the best point. This

process is recursively implemented until the best point

locates at the center of the square search pattern. In [8], a

large diamond search pattern (LDSP) with eight search

points and a small diamond search pattern (SDSP) with

four search points are employed. The LDSP is recursively

implemented until the best search point is the center of

LDSP, then an SDSP is used to refine the search result. In

[10], a hexagon-based block matching algorithm is pro-

posed. Firstly, it searches a relatively best point by recur-

sively implementing the hexagon search pattern (HSP).

Then an SDSP is additionally employed to refine the search

result. These algorithms are presented based on the uni-

modal error surface assumption [11]. However, this

assumption may result in a local minimum. In order to

solve the local minimum problem, UMHexagonS [12, 13]

is proposed and adopted in H.264/AVC reference software.

It takes advantages of multiple initial search point decision

scheme and hybrid search pattern. However, the excellent

R-D performance comes at the high computational com-

plexity of these two techniques.

In this paper, we propose a new efficient block matching

algorithm. First of all, according to the spatial and temporal

correlations in natural video sequences, three predictive

models are jointly employed to determine a more accurate

initial search point. After getting the initial search point,

according to the center-biased concept of block matching as

well as the asymmetrical characteristics of the best motion

vectors (MVs) in natural video sequences, an SDSP and an

asymmetrical cross search pattern (ACSP) are employed to

locate the best matching block. The experimental results

demonstrate that the proposed algorithm yields a quite

promising performance in terms of R-D performance and

computational complexity. Especially, the proposed algo-

rithm is more suitable for real-time application.

The rest of this paper is organized as follows. The

details of the proposed fast ME algorithm are described in

Sect. 2. Experimental results are shown in Sect. 3. At last,

Sect. 4 concludes this paper.

2 Proposed fast ME algorithm

In this section, two techniques that are jointly used to

locate the best matching block are introduced. One is the

initial search point decision scheme. In order to take full

advantage of the correlations between spatial and temporal

blocks, three predictive models are jointly employed to

determine an initial search point. The other is the best

block search strategy. An experiment is performed to

analyze the best MVs distribution in natural video

sequences. According to the distribution, different block

matching search patterns are used to locate the best

matching block.

2.1 Initial search point decision

To avoid the disadvantages of unimodal error surface

assumption [11] which may lead block matching search

into a local minimum, we should make full use of corre-

lations in natural video sequences. Only in this way can we

get a more accurate initial search point. It is well known

that there are strong correlations between MVs in both

spatial and temporal neighboring blocks in natural video

sequence. In spatial domain, the correlations exist in the

neighboring macroblocks and inner neighboring blocks of

one Macroblock (MB). In temporal domain, there is a

strong correlation between the collocated blocks of two

consecutive frames. In order to take full advantages of

these correlations, three conventional predictive models are

used to locate the initial search point: median-predictive

model (MPM), inner neighboring block-predictive model

(INBPM) and collocated block-predictive model (CBPM)

[12–14], they are corresponding to the neighboring MB

correlation, inner neighboring block correlation and col-

located block correlation, respectively. Since the spatial

neighboring blocks on the top, top-right, and left of the

current block have been encoded, MPM uses the median

value of these three spatial neighboring blocks as the initial

search point candidate, and is defined as

MVMPM ¼ medianfMVT; MVTR; MVLg; ð1Þ

where MVT; MVTR; MVL denote the MV of top, top-

right and left block of the current block, respectively, as

shown in Fig. 1. Because H.264/AVC supports seven

block-size ME, the MV of current block size is highly

correlated with its inner neighboring block size, for

example, the neighboring block size of 16 9 8 and 8 9

16 are 16 9 16, the neighboring block size of 8 9 8 is

16 9 8 or 8 9 16, the neighboring block size of 8 9 4 and

4 9 8 are 8 9 8, and so on. Based on this characteristic,

the MV of neighboring block size is employed by INBPM,

and the predictive result is set as the initial search point

candidate. In natural video sequences, the motion of one
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object is successive until the scene change happens. CBPM

utilizes the MV of collocated block in previous frame as

the initial search point candidate, Fig. 2 gives an

illustration on CBPM. Finally, the initial search point is

selected from these three MV candidates as Eq. (2).

MVinitial ¼ minfJðMVcandidate; kMOTIONÞ;MVcandidate

2 fMVMPM;MVINBPM;MVCBPMgg; ð2Þ

where J represents the R-D cost function [15]. MVMPM,

MVINBPM and MVCBPM denote the MVs are derived by

MPM, INBPM and CBPM, respectively.

2.2 Distribution-based block matching search patterns

In fast ME algorithms, the block matching search pattern is

highly concerned with the coding efficiency in terms of

computational complexity and R-D performance. For

exploiting the characteristics of the best MVs distribution

in natural video sequences, an experiment is performed on

the standard video sequences with JM14.1 reference codec

of H.264/AVC [16]. The test conditions are listed in Table

1, the search range is set to 32 and the full search (FS) ME

algorithm is used. The statistical results for three QCIF,

three CIF and three HD (720P) video sequences are listed

in Tables 2, 3, 4 and 5 based on different Qp values. Table

6 shows the summary results.

In Tables 2, 3, 4, 5 and 6, (0, 0) represents the initial

search point which is selected as the best point finally. (X,

0) denotes the best MVs which locate at the horizontal

direction of the initial search point. (0, Y) represents the

best MVs locate at the vertical direction of the initial

search point. (X, Y) is the other conditions.

From Tables 2, 3, 4 and 5, it can be observed that with

the increase of Qp, the ratio of (0, 0) increases, while the

ratio of (X, Y) decreases, but the ratio of (X, 0) and

(0 ,Y) almost remains unchanged. Another observation

from the tables, video sequences with slow motion or

simple context (such as Container, Salesman), (0, 0) would

be selected as the best MV at the probability of 90 %. For

fast motion or complex texture video sequences (such as

bus, mobile), the percentage of (X, Y) is larger than that of

the slow and simple context sequences.

Cur

MPM

T
TR

L 

Fig. 1 Illustration of median-predictive model

Collocated-block CBPM

Fig. 2 Illustration of collocated block-predictive model

Table 1 Test conditions

Profile Main

Quantization parameter (Qp) 24, 28, 32, 36

Subpel ME Enable

RD optimization High complexity mode

Number of reference frames 5

GOP structure IBPBP

Symbol mode CABAC

Table 2 The best MVs distribution found by FS, Qp = 24

Format Sequence (0, 0)

(%)

(X, 0)

(%)

(0, Y)

(%)

(X, Y)

(%)

QCIF Container 87.04 10.39 1.65 0.92

Mobile 40.77 18.14 4.95 36.14

Salesman 89.38 2.55 2.38 5.69

CIF Bus 16.70 16.74 5.11 61.45

News 84.75 5.87 3.58 5.80

Mother 72.52 7.94 4.58 14.96

HD (720P) Harbour 26.07 23.94 11.15 38.84

Shields 37.31 46.17 2.77 13.75

Stockholm 35.26 44.67 3.11 16.96

Average 54.42 19.60 4.36 21.62

Table 3 The best MVs distribution found by FS, Qp = 28

Format Sequence (0, 0)

(%)

(X, 0)

(%)

(0, Y)

(%)

(X, Y)

(%)

QCIF Container 90.90 8.08 0.78 0.24

Mobile 42.65 18.06 4.83 34.46

Salesman 90.02 2.54 2.66 4.78

CIF Bus 18.44 18.95 6.81 55.80

News 86.25 5.68 3.21 4.86

Mother 75.97 7.91 4.66 11.46

HD (720P) Harbour 30.56 27.72 10.08 31.64

Shields 41.80 47.22 1.98 9.00

Stockholm 47.09 41.04 2.98 8.89

Average 58.19 19.69 4.22 17.90

J Real-Time Image Proc

123



From the comprehensive assessment on Table 6, we can

see that (0, 0) which is selected as the best MV accounts for

the largest proportion, about 59.84 % on average. If it can

be determined early, much more time will be saved.

According to the principle that the best point is always

center biased [17], we use an early termination strategy to

stop early the block matching process. The early termina-

tion strategy performs an SDSP on (0, 0) which represents

the initial search point. If the initial search point is the best

point which is with the minimum R-D cost among the five

checked points, the following block matching search will

be skipped. Otherwise, the following block matching

search will be performed. The candidate MVs of SDSP are

given by

MVSDSP�candidate ¼ fðMVx;MVyÞjðMVx;MVyÞ
¼ ðx� 1; yÞ; ðx; y� 1Þg; ð3Þ

where (x, y) denotes the MV of initial search point or the

MV of the best search point from previous step. An

example of SDSP is shown in Fig. 3, where ‘‘circle’’

represents the initial search point or the best point which is

obtained from the previous search step. ‘‘Triangle’’ repre-

sents the search points of SDSP.

From Table 6, we can also find that (X, 0) and (0, Y)

make up an significant proportion of the best MVs, with

19.48 and 4.17 %, respectively. On the other hand, (X, 0) is

about 4 times that of (0, Y), this reflects that the best MVs

are asymmetrical distribution in natural video sequences.

Based on the asymmetrical distribution between (X, 0) and

(0, Y), an ACSP and an SDSP are jointly used to find the

best point. The search points in horizonal direction of

ACSP is 4 times the number of that in vertical direction.

The candidate MVs of ACSP are given by

MVACSP�candidate ¼ fðMVx;MVyÞjðMVx;MVyÞ
¼ ðx� 2m; yÞ; m ¼ 1; 2; . . .S=2;

ðx; y� 2nÞ; n ¼ 1; 2; . . .S=8g; ð4Þ

where (x, y) represents the MV of initial search point. S is

the search range. An example of ACSP is shown in Fig. 4,

where ‘‘circle’’ represents the initial search point, ‘‘square’’

denotes the search points of ACSP. After getting the best

point from ACSP, a SDSP is performed on the best point to

detect whether it is the best MV with (X, 0) or (0, Y). If the

best point is at the center of SDSP, the following search

will be skipped. Otherwise, locate the best MV from

another half search points of the vertical direction of initial

search point and (X, Y).

From Table 6, it is easy to see that the percentages of (X,

Y) hold a relatively small value, with 16.51 % on average.

In order to control the R-D performance, the best MVs with

Table 4 The best MVs distribution found by FS, Qp = 32

Format Sequence (0, 0)

(%)

(X, 0)

(%)

(0, Y)

(%)

(X, Y)

(%)

QCIF Container 92.72 7.00 0.24 0.04

Mobile 44.91 17.92 5.04 32.13

Salesman 90.89 2.48 2.80 3.83

CIF Bus 22.28 21.28 8.33 48.11

News 87.66 5.61 2.86 3.87

Mother 80.18 7.34 4.38 8.10

HD (720P) Harbour 35.74 31.65 8.57 24.04

Shields 45.76 45.25 2.10 6.89

Stockholm 52.25 38.88 2.97 5.90

Average 61.38 19.71 4.14 14.77

Table 5 The best MVs distribution found by FS, Qp = 36

Format Sequence (0, 0)

(%)

(X, 0)

(%)

(0, Y)

(%)

(X, Y)

(%)

QCIF Container 94.10 5.83 0.06 0.01

Mobile 47.98 17.22 5.68 29.12

Salesman 92.25 2.33 2.66 2.76

CIF Bus 28.48 23.50 9.00 39.02

News 89.21 5.35 2.45 2.99

Mother 84.79 6.18 3.35 5.68

HD (720P) Harbour 42.96 32.59 7.22 17.23

Shields 50.84 41.90 2.25 5.01

Stockholm 57.83 35.36 2.76 4.05

Average 65.38 18.92 3.94 11.76

Table 6 Summary of the best MVs distribution

Qp (0, 0)

(%)

(X, 0)

(%)

(0, Y)

(%)

(X, Y)

(%)

24 54.42 19.60 4.36 21.61

28 58.19 19.69 4.22 17.90

32 61.38 19.71 4.14 14.77

36 65.38 18.92 3.94 11.76

Average 59.84 19.48 4.17 16.51

Fig. 3 Illustration of small diamond search pattern
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another half search points of the vertical direction of initial

search point and (X, Y) should be located accurately. Due

to this reason, we use a SDSP to detect the best MVs with

them, and the SDSP is performed on the best point which is

derived by the previous search step to determine the best

MVs with (X, 0) and (0, Y). If the search result locates at

the center of SDSP, stop the following search and output

the best MV. Otherwise, SDSP is recursively implemented

until the best point locates at the center of SDSP.

Finally, the proposed fast ME algorithm is presented as

Algorithm 1. An example of search procedure of the pro-

posed algorithm is shown in Fig. 5, where ‘‘circle’’ is the

initial search point. ‘‘Trianlge’’ represents the SDSP which

is firstly used to terminate early the block matching search.

‘‘Square’’ is the search point of ACSP. ‘‘Diamond’’ denotes

the recursive SDSP, which is secondly employed to ter-

minate the block matching process, and locate the best

matching block.

3 Experimental results

The proposed algorithm is implemented on H.264/AVC

reference software JM 14.1 to evaluate its efficiency. The

test conditions are listed in Table 1 and the search range is

set to 16 and 32, respectively. The hardware platform is

Intel E5800 3.16GHz CPU, 3.25GB RAM with Microsoft

Windows 7 64-bit operating system. For QCIF, CIF, HD

(720P) video sequences, 300, 200, 100 frames will be

encoded, respectively.

3.1 Comparison of the hit rate

In order to evaluate the efficiency of the proposed algo-

rithm, we compared the hit rate between the best MVs

which are derived by the proposed algorithm and Xu’s [18]

improved UMHexagonS algorithm (we denote it as UM-

HexagonS [18]). The best MVs which are obtained by FS

are used as the benchmark MVs.

The results of three QCIF video sequences (Akiyo,

Bridge-Close and Claire) as well as three CIF video

sequences (Hall, Mobile and Miss-America) are presented

in Fig. 6.

Fig. 4 Illustration of asymmetrical cross search pattern, search

range = 8

Fig. 5 Search procedure of the proposed fast ME algorithm, search

range = 16
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From Fig. 6, we can see that the proposed algorithm has

a quite similar hit rate with UMHexagonS [18]. For video

sequences with slow motion or simple context (such as

Akiyo and Bridge-close, Claire and Hall), not only UM-

HexagonS [18] but also the proposed algorithm, the hit rate

can reach up to 90 %. That is because (0, 0) holds the

largest proportion for these sequences. As for video

sequences with fast motion activity (such as Mobile), there

is a little decrease in hit rate, since the increased proportion

of (X, Y). However, the decreased hit rate is still accept-

able. Tables 7 and 8 show the R-D performance of some

video sequences with fast motion activity (such as Foot-

ball, Bus, Mobile and Parkrun), we can see that the R-D

performance decrease is within an acceptable range. The

comprehensive assessments indicate that, when the search

range is equal to 16 and 32, the hit rate of the proposed

algorithm is 91.23 and 91.03 % on average, respectively.

The hit rate of UMHexagonS [18] is 92.89 and 92.72 %,

when the search range is equal to 16 and 32, respectively.

Compared to UMHexagonS [18], the hit rate of the pro-

posed algorithm decreases about 0.2 %, 0.17 % on aver-

age, when the search range is equal to 16 and 32,

respectively. These two values are quite acceptable and

demonstrate that the proposed algorithm is effective in

finding the best MVs.

3.2 Comparison of PSNR, bitrate and CPU time

We compare the performance of the proposed algorithm

with recently fast ME algorithms, UMHexagonS [18] and

Fast Directional Gradient Descent Search (FDGDS) [19] in

terms of BDPSNR, BDBitrate [21], ME time and encoding

time. The comparative results are tabulated in Tables 7 and

8. In these two tables, DMET and DEncT represent the

CPU time reduction in ME process and encoding process,

respectively. They are defined as

DMET ¼ METproposed �METoriginal

METoriginal

� 100 %; ð5Þ

DEncT ¼ EncTproposed � EncToriginal

EncToriginal

� 100 %; ð6Þ

where METproposed and EncTproposed denote the ME time

and total encoding time of the the proposed algorithm.

METoriginal and EncToriginal represent the ME time and total

encoding time of UMHexagonS [18] and FDGDS,

respectively.

Fig. 6 Comparison of the hit rate between the proposed algorithm

and UMHexagonS [18]

Table 7 Summary of encoding results, search range = 16

Format Sequence Proposed vs UMHexagonS [18] Proposed vs FDGDS [19]

BDPSNR

(dB)

BDBitrate

(%)

DMET

(%)

DEncT

(%)

BDPSNR

(dB)

BDBitrate

(%)

DMET

(%)

DEncT

(%)

QCIF Coastguard 0.00 -0.07 -31.39 -16.57 0.02 -0.50 -7.56 -16.83

Football -0.14 2.23 -43.12 -26.83 0.25 -3.64 0.00 -3.43

Hall -0.04 0.84 -14.46 -6.96 0.03 -0.59 -3.30 -3.00

Silent -0.06 1.16 -23.20 -12.66 -0.02 0.41 -7.49 -7.17

Bus -0.07 1.31 -37.72 -23.03 0.90 -14.71 -3.62 -3.10

CIF Container 0.00 0.06 -18.15 -9.97 0.01 -0.24 -6.37 -4.29

Mobile 0.00 0.03 -39.65 -24.14 0.01 -0.32 -6.44 -5.10

Paris -0.05 1.01 -20.66 -8.91 0.00 -0.12 -7.57 -4.73

Harbour 0.00 0.08 -29.59 -16.99 0.02 -0.43 -12.72 -13.18

Parkrun -0.01 0.11 -37.42 -21.09 0.02 -0.35 -28.49 -26.23

HD (720P) Shields -0.01 0.38 -31.22 -18.19 0.07 -2.60 -32.63 -29.04

Spincalendar 0.01 -0.45 -24.18 13.40 0.00 -0.04 -20.35 -18.68

Stockholm -0.02 0.82 -28.04 -15.51 0.08 -4.68 -22.44 -19.26

Average -0.03 0.58 -29.14 -14.42 0.11 -2.14 -12.23 -11.85
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Table 8 Summary of encoding results, search range = 32

Format Sequence Proposed vs UMHexagonS [18] Proposed vs FDGDS [19]

BDPSNR

(dB)

BDBitrate

(%)

DMET

(%)

DEncT

(%)

BDPSNR

(dB)

BDBitrate

(%)

DMET

(%)

DEncT

(%)

QCIF Coastguard 0.00 -0.06 -58.84 -47.85 0.05 -1.34 -5.11 -0.72

Football -0.14 2.15 -50.58 -36.05 0.13 -2.00 -16.81 -12.62

Hall -0.01 0.20 -18.94 -10.71 0.00 -0.04 -12.53 -10.03

Silent -0.04 0.84 -40.60 -30.74 -0.01 0.24 -8.81 -4.54

Bus -0.08 1.55 -52.03 -39.18 0.85 -13.94 -7.17 -2.57

CIF Container -0.01 0.21 -32.42 -23.29 0.00 -0.04 -0.48 2.47

Mobile 0.00 0.07 -46.50 -42.54 0.03 -0.64 -4.48 2.61

Paris -0.07 1.34 -28.56 -14.43 0.00 -0.15 -18.59 -14.68

Harbour 0.00 0.04 -35.06 -21.76 0.00 -0.11 -20.66 -17.54

Parkrun 0.00 -0.06 -46.79 -30.08 0.01 -0.30 -9.85 -2.51

HD (720P) Shields -0.01 0.51 -32.27 -19.44 0.06 -2.34 -24.63 -19.26

Spincalendar 0.05 -0.92 -27.98 -16.20 0.00 0.25 -18.57 -14.28

Stockholm -0.02 1.14 -32.53 -19.77 0.06 -3.67 -6.47 -0.08

Average -0.03 0.54 -38.70 -27.08 0.09 -1.85 -11.86 -7.21

(a) (b)

(c) (d)

Fig. 7 Encoding performance difference in ME time, search range = 32. a Hall. b Mobile. c Harbour. d Stockholm
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From Tables 7 and 8, we can see that our proposed fast

ME algorithm can obtain significantly better results than

UMHexagonS [18] and FDGDS in reducing the ME time

and total encoding time. Moreover, our proposed algorithm

obtains a better R-D performance than FDGDS. When

search range equals to 16, compared to UMHexagonS [18],

our algorithm can save the ME time and encoding time up

to 29.14 and 14.42 % with 0.03 dB BDPSNR loss and

0.58 % BDBitrate increase. Compared to FDGDS, our

algorithm can reduce the ME time and total encoding time

up to 12.23 and 11.85 % with 0.11 dB BDPSNR increase

and 2.14 % BDBitrate decrease. When search range equals

to 32, our proposed algorithm can save the ME time and

encoding time up to 38.70 and 27.08 %, BDPSNR loss

0.03 dB, BDBitrate increase 0.54 % as compared to UM-

HexagonS [18]. Compared to FDGDS, our proposed

algorithm obtains a better R-D performance, 0.09 dB

BDPSNR increase and 1.85 % BDBitrate decrease mean-

while the ME time and total encoding time reduce up to

11.86 and 7.21 % on average, respectively. For the video

sequence (Bus), compared to FDGDS, our proposed algo-

rithm achieves a quite better R-D performance, when

search range equals to 16, BDPSNR increases about

0.90 dB and BDBitrate decreases -14.71 %. When search

range equals to 32, the BDPSNR and BDBitrate change are

0.85 dB and -13.94 %, respectively. This is because the

Bus sequence is with violent motion activities, FDGDS

cannot locate the best search point accurately, and easily

drop into local minimum.

Figure 7 shows the encoding performance difference of

each frame in ME time of UMHexagonS [18], FDGDS and

the proposed algorithm for four video sequences (Hall is

with QCIF format and slow motion activity, Mobile is with

CIF format and complex texture, Harbour and Stockholm

are with HD format and medium motion activity) with

search range equals to 32. From Fig. 7, we can see that our

proposed algorithm consumes the minimum ME time for

encoding each frame. Especially for HD sequences

(a) (b)

(c) (d)

Fig. 8 R-D curves, search range = 32. a Hall. b Mobile. c Harbour. d Stockholm
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(Harbour and Stockholm), our proposed algorithm spends

the least ME time when compared to UMHexagonS and

FDGDS for encoding every frame. This demonstrates that

our proposed algorithm can reduce the computational

complexity of ME process efficiently. To demonstrate the

R-D performance of the proposed algorithm, we give the

R-D curves of Hall, Mobile, Harbour, Stockholm in Fig. 8.

It can be observed that the proposed algorithm achieves a

quite similar R-D performance as the compared algorithms.

For Stockholm, the proposed algorithm achieves a better

R-D performance than FDGDS. From Figs. 7 and 8 and

Tables 7 and 8, we can conclude that our proposed algo-

rithm can work well in not only video sequences with slow

motion or simple context (such as Hall, Silent, Container)

but also the sequences with fast motion and complex

context (such as Coastguard, Mobile and Parkrun). Espe-

cially, for HD video sequences, the proposed algorithm can

achieve a relatively better coding performance.

In order to demonstrate that our proposed algorithm is

suitable for real-time application, we give a comparison on

ME time variation between UMHexagonS, FDGDS and

our proposed algorithm. The results of four video sequen-

ces with different motion activities and texture (Hall,

Mobile, Harbour and Stockholm) are shown in Fig. 9, and

the ME time variation is measured by the difference

between two consecutive frames. From Fig. 9, it can be

observed that the variation scope of our proposed algorithm

is almost the smallest when compared to UMHexagonS and

FDGDS. For the video sequence (Hall), the variation scope

of these three algorithms are not stable. For the other three

video sequences (Mobile, Harbour and Stockholm), our

proposed algorithm is with the smallest variation scope for

most frames. Generally, we can see that our proposed

algorithm consumes relatively less ME time for encoding

each frame and the ME time variation is relatively more

stable. Hence, compared to UMHexagonS and FDGDS, our

(a) (b)

(c) (d)

Fig. 9 Encoding performance in ME time variation, search range = 32. a Hall. b Mobile. c Harbour. d Stockholm
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proposed algorithm is more suitable for real-time applica-

tion. However, for video sequence Hall, the ME time

variation is changed dramatically in some frames.

The ME time variation depends on the video content,

prediction structure and ME algorithm. Since video content

and prediction structure are fixed, we can address the

fluctuation of ME time variation from the algorithm aspect.

Firstly, total ME time can be reduced by jointly optimizing

the MD, MRFS and searching best point process. More-

over, according to the best MVs distribution in the previous

frame, the search range of ME in the current frame is

possible to be adaptively reduced; hence much more ME

time could be saved. Secondly, to dynamically limit the

ME time of each frame, the given ME time (T) can be

allocated to each MB, then define several thresholds Tn.

Initially, the fast ME is performed by considering R-D

performance with high priority. If the best point is not

achieved within time threshold, Tn, faster ME strategies or

ME early termination can be adopted to guarantee that the

ME time will not exceed the given time T. Take our pro-

posed algorithm as an example, in step 2, the SDSP can be

simplified based on the MB movement direction, if the MB

deflects to horizonal direction, only two horizonal points of

SDSP are performed. Otherwise, two vertical points are

searched. At last, the time can be reduced by half; in step 3,

the time can also be saved by adjusting the interval of

ACSP from 2 to 4 or larger. More sophisticated control

algorithms are possible and ideas can be adopted from rate

control and automatic control theory. Generally, while

designing the real-time application system, we can meet

the real-time requirements at the cost of hardware resour-

ces by using parallelization, or using high frequency

devices (CPU/memory/bus), etc. Here, in the algorithm

aspect of the encoder, we can adopt some control algo-

rithms, early termination and new ME search strategies

(giving time reduction with high priority) to dynamically

meet ME time limitation. However, it may at the cost of

R-D performance.

4 Conclusion

In this paper, an efficient fast ME algorithm is proposed.

Firstly, based on the correlations between spatial and

temporal blocks, three predictive models are jointly

employed to determine the initial search point. After get-

ting the initial search point, according to distribution of the

best MVs in natural video sequences, an SDSP and an

ACSP are used to locate the best matching block. The

experimental results demonstrate that the proposed algo-

rithm yields a quite promising performance in terms of R-D

performance and computational complexity. The experi-

mental results also show that the proposed algorithm works

well in different formats of video sequences with various

motion activities, and is more suitable for real-time

application.
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