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a b s t r a c t

MultiView Video (MVV) has attracted considerable attention recently since it is capable of providing
users with three-dimensional perception and interactive functionalities. However, these MVV data
require large mount of storage and bandwidth in network transmission. In this paper, we present a novel
Depth Perceptual Region-Of-Interest (DP-ROI) based Multiview Video Coding (RMVC) scheme to exten-
sively improve data compression efficiency by exploiting redundancies in depth perception. Firstly, we
define DP-ROI according to the three-dimensional depth sensation of human visual system. Then, a
framework of RMVC is developed to improve compression efficiency by properly segmenting the MVV
into different macroblock wise DP-ROIs and encoding them separately. And then, we propose three fast
depth based DP-ROI extraction and tracking algorithms by jointly using motion, texture, depth as well as
previous extracted DP-ROIs. Finally, on the basis of the extracted DP-ROI, bit allocation optimization
model is proposed to allocate more bits on DP-ROIs for high image quality and fewer bits on background
regions for high compression ratio. Experimental results show that the presented RMVC scheme achieves
significant coding gains at high rate while comparing with original joint multiview video model. To be
specific, up to 14.22–23.32% bit-rate are saved while 0.16–0.68 dB coding gains are achieved in DP-ROIs
at the cost of the image quality degradation in background.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

MultiView Video (MVV) is attracting a lot of interests as one of
the new video types because it provides viewers with Three-
Dimensional (3D) scene and allows viewers freely to change their
viewpoints as if they were there. With these features, it will be
used for many new multimedia applications, such as photorealistic
rendering of 3D scenes, Free Viewpoint Video (FVV) [1] and 3D
TeleVision (3DTV) communications [2,3]. Multiview Video plus
Depth (MVD) data format is proposed as the main 3D representa-
tion format that supports 3DTV and FVV [4,5]. It consists of MVV
and multiple associated depth videos which indicate the distance
between the captured scene and cameras. This MVD data format
fulfills the 3D video system’s requirements and supports wide an-
gle of 3D displays and auto-stereoscopic displays [6]. Moreover, it
also allows rendering a continuum of output views with high im-
age quality and low-complexity [7]. However, since MVV is gener-
ated by simultaneous recording of a moving scene with multiple
cameras located at different positions, it is with huge amount of
010 Published by Elsevier Inc. All r
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data volume and we need to develop Multiview Video Coding
(MVC) schemes to encode these MVV data efficiently.

MVC has been studied in relation to several video coding stan-
dards. MPEG-2 multiview profile is proposed for stereoscopic video
coding. The MPEG-4 multiple auxiliary components are also re-
lated to MVC. In addition, H.263 and H.264 have also been tried
for MVC. Since ISO/IEC JTC1/SC29/WG11 Moving Picture Experts
Group (MPEG) has recognized the importance of MVC technolo-
gies, an Ad-Hoc Group (AHG) on 3D Audio and Visual (3DAV)
was established. MPEG has surveyed some of MVC schemes, such
as ‘Group-of-GOP prediction (GoGOP)’, ‘sequential view predic-
tion’, ‘checkerboard decomposition’, and so on [8]. Oka et al. pro-
posed MVC scheme using multi-directional picture for ray-space
data [9]. Kitahara et al. proposed GoGOP prediction structure to
improve the random accessibility of MVV system by adopting mul-
tiple intra frames [10]. Yea et al. proposed view synthesis predic-
tion based MVC scheme to improve inter-view compression
efficiency [11]. Zhang et al. developed an efficient MVC algorithm
which adaptively selects optimal prediction structure according
to the spatio-temporal correlation of MVV sequence [12]. Merkle
et al. proposed a MVC scheme based on H.264/AVC using Hierar-
chical B Pictures (MVC-HBP) with superior compression efficiency
and temporal scalability [13]. MVC-HBP has been adopted into
MVC standardization draft by Joint Video Team (JVT) and used in
ights reserved.

http://dx.doi.org/10.1016/j.jvcir.2010.03.002
mailto:jianggangyi@126.com
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


Y. Zhang et al. / J. Vis. Commun. Image R. 21 (2010) 498–512 499
the Joint Multiview Video Model (JMVM), which was developed as
an extension of H.264/MPEG-4 AVC.

In previous MVC schemes [8–13], intra, inter and inter-view
prediction compensation technologies are adopted to eliminate
spatial, temporal and inter-view redundancies, respectively. Addi-
tionally, YUV color space transform, integer transform and quanti-
zation technologies are utilized to explore visual redundancies
including chroma redundancies and high frequency redundancies.
However, these schemes have not taken regional selective atten-
tion and 3D depth perception of Human Visual System (HVS) into
consideration. It has been revealed that HVS is more sensitive to
the distortion in Region-Of-Interest (ROI) than background regions
[14]. This fact indicates the visual redundancy coming from regio-
nal selective interests exists in MVV. Accordingly, ROI based ap-
proaches can benefit compression efficiency of video coding,
quality of virtual image rendering and reliability of network trans-
mission for MVV system [15]. Yang and Kaminsky et al. proposed
ROI based bit allocation and dynamical computational power allo-
cation to improve coding efficiency [16,17]. However, these bit
allocation schemes were proposed for single-view video coding
and cannot be directly applied to MVC because inter-view predic-
tion is also adopted in MVC.

Research on ROI extraction is one of the most challenging topics
for content based video processing. Usually, in single-view video,
ROI extraction algorithm adopts color, illumination, contour and
motion as key features [18]. Additionally, contrast, visual attention
[19] and face detection [16] are also used for semantic ROI extrac-
tion. However, they are complex and hard to separate foreground
from background due to lacking of depth information. Fortunately,
these problems can be solved in MVV because depth information
and multiple-channel videos are available. In [20], initial object seg-
mentation is obtained by merging neighboring sampling positions
with disparity vectors of similar size and direction. Starting from this
initial segmentation, true object borders are then detected. Simi-
larly, Marugame et al. proposed an object extraction method by uti-
lizing disparity estimation and object contours [21]. In the existing
ROI extraction schemes, previously extracted ROIs have not effi-
ciently utilized for ROI extraction for time consecutive frames or
neighboring views. Furthermore, ROI in MVV is different from that
of conventional single-view video because MVV provides 3D depth
perception, which makes people more likely interested in regions
with small depth value and depth discontinuous regions. It means
the contents close to the viewers and the regions provide strong
depth perception shall be given a higher priority. Furthermore, the
existing object tracking algorithms [22–24] were proposed for ob-
ject tracking in time dimension but not suitable for object tracking
in view dimension for MVV.

In this paper, we present a novel Depth Perceptual Region-Of-
Interest (DP-ROI) based Multiview Video Coding (RMVC) scheme
to improve video compression efficiency by extensively exploiting
redundancies in depth perception. The rest of this paper is orga-
nized as follows. We define a DP-ROI for MVV and present a frame-
work of RMVC in Section 2. Then, we discuss four ROI extraction
schemes and propose related low-complexity DP-ROI extraction
and tracking algorithms in Section 3. And then, Section 4 proposes
regional selective bit allocation optimization based on extracted
DP-ROIs. Section 5 presents ROI based image quality metrics. DP-
ROI extraction, bit allocation and coding performance of RMVC
are experimentally analyzed in Section 6. Finally, conclusions are
given.
2. Framework of the RMVC

Generally, depth perception is based on various depth cues such
as illumination, relative size, motion, occlusion, texture gradient,
geometric perspective, disparity and so on. However, the most
effective depth perception sensation is obtained by viewing a scene
from slightly different viewing positions, i.e. disparity. In single-
view video, ROI is often related to moving regions and textural re-
gions. However, DP-ROI in MVV is extensively related to 3D per-
ception in following two aspects. One is the regions with small
depth values, i.e. large disparity, because they are closer to viewer
and sometimes pop-out from video screen. The other is depth dis-
continuous regions which draw much attention because they pro-
vide relative strong 3D depth sensation.

Fig. 1 shows a framework of 3D video system in which RMVC is
proposed for high compression efficiency and high rendering qual-
ity. The pink part of the Fig. 1 shows the core of RMVC. It mainly
includes DP-ROI extraction module, MVC encoder using MVC-
HBP prediction structure [13], and DP-ROI based bit allocation
optimization. First, N synchronized color videos are captured by
parallel or arc arranged video capture system. Then, N depth videos
synchronized with color videos are captured by depth cameras or
generated by disparity matching based depth creation algorithms.
By using depth video and multiview texture video, the DP-ROI
extraction module quickly and efficiently extracts macroblock
(MB) wise DP-ROI mask for block-based video coding. By taking
the advantage of the extracted DP-ROIs, MVC encoder and depth
encoder based on advanced video coding standard are optimized
for low-complexity, bit-rate saving in background regions and bet-
ter quality in DP-ROIs. The MB-wise DP-ROI mask is not necessary
transmitted to the client, thus it will not put burden on the net-
work bandwidth. Thus, RMVC scheme is compatible with current
block-based MVC standard and needs no high-level syntax modifi-
cation. Finally, compressed color and depth bitstream are multi-
plexed, synchronized and transmitted.

At the client, the color and depth bitstream is de-multiplexed
and decoded by MVC decoder and depth decoder, respectively.
For multiview imaging, a scene is usually captured by limited num-
ber of cameras. It is therefore necessary to generate user’s re-
quested views from the limited captured views. With the
decoded MVV, depth videos as well as the transferred video cam-
eras’ calibration data, arbitrary view generation module can effi-
ciently render a continuum of output views, N0(N0 > N), through
depth image based rendering [7]. According to different types of
displayer, e.g. HDTV, stereoscopic displayer or multiview displayer,
different number of views are rendered and transmitted. Finally,
view selection signal from interactors, e.g. mouse, joystick or head-
er tracking devices, feedback to view generation model for interac-
tive viewing.
3. DP-ROI extraction for MVV

3.1. DP-ROI extraction and tracking schemes for MVV

Let 2D-GOP denote a 2D picture array, in which each row holds
temporally successive pictures of one view, and each column con-
sists of spatially neighboring views captured at the same time, as
shown in Fig. 2. Obviously, the simplest approach is extracting
ROI independently for all the frames in a 2D-GOP, as shown in
Fig. 2(a). In the figure, each white rectangle represents one frame
extracting ROI without using temporally or inter-view adjacent
ROIs’ information. As MVV data is originated from the same scene
with different viewpoints, the inherent dependencies include in-
ter-view ones among neighboring camera views and temporal ones
among temporally successive images of each view. These depen-
dencies can be used to joint ROI extraction in view and temporal
dimensions. So the independent scheme, shown in Fig. 2(a), is
highly time-consuming because previously extracted ROIs have
not been efficiently utilized.



Fig. 1. Framework of 3D video system based on RMVC.

Fig. 2. ROI extraction and tracking schemes. (a) Independent scheme, (b) temporal extraction scheme, (c) inter-view extraction scheme and (d) joint extraction scheme.
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Fig. 2(b) shows temporal extraction scheme, where gray rectan-
gle, e.g. S0T 1 frame, represents a frame that extracts ROI by using
ROIs of temporal preceding frames. The solid arrow represents
tracking direction. ROIs of T 0 frames are extracted firstly. The rest
frames of the 2D-GOP track the extracted ROIs of temporal preced-
ing frames in order to reduce computational complexity. Though
temporal extraction scheme utilizes temporal correlation to ex-
tract ROIs, it is simply expanded from conventional single-view vi-
deo tracking and has not taken inter-view correlation into account.
Fig. 2(c) shows inter-view extraction scheme, in which black rect-
angle, e.g. S1T 0, represents a frame that extracts ROIs by using
neighboring extracted ROIs and inter-view dependencies of MVV.
ROIs of frames in view S0 are extracted firstly. Then, the rest
frames track the previously extracted ROIs of neighboring views.
However, inter-view extraction scheme has not utilized temporal
dependencies. Moreover, inter-view extraction scheme tracks view
by view sequentially from S0. Error may be propagated due to long
tracking path length.

Based on the above analyses, we propose a joint extraction
scheme, shown in Fig. 2(d), in which previously extracted ROIs of
temporal preceding or inter-view neighboring frames are utilized.
This scheme can improve ROI consistency among inter-view/tem-
poral frames and reduce computational complexity. For a 2D-GOP,
there is only one frame of the center view, i.e. S2T 0 denoted by
white rectangle, extracting ROI independently. That is ROIs in
S2T 0 are extracted without prior ROIs’ information. Then, the tem-
poral successive frames in view S2, labeled as gray rectangles, track
the ROIs of temporal preceding frames. Finally, neighboring views,
i.e. S0, S1, S3 and S4, labeled as black rectangles, adopt the inter-
view geometry dependencies with S2 to extract ROIs. The joint
extraction scheme tracks ROIs from both temporal preceding
frames and neighboring views, which is able to more efficiently re-
duce computational complexity and improve ROI consistency
among inter-view/temporal frames In addition, the ROIs of the
center view are tracked by neighboring views, which relieve error
propagation and occlusion problems among views.

In the following subsections, Depth Based DP-ROI Extraction
(DBDE), the ROI extraction algorithm indicated as the white rectan-
gles in Fig. 2, is presented first. Then, we present inter-view and
temporal tracking algorithms, the black and gray rectangles in
Fig. 2. They adopts previous extracted DP-ROIs and inter-view/
temporal correlations to facilitate DP-ROI extraction.
3.2. Depth based DP-ROI extraction

Depth data in MVD supports high quality rendering and low-
complexity of rendering a continuum of output views. In addition,
depth videos can also be utilized to facilitate semantic ROI extrac-
tion. In this study, DBDE is proposed to extract DP-ROI by jointly
using motion, texture and depth information of MVD data.

Fig. 3 shows the flowchart of DBDE algorithm which includes
the following four steps.

Step 1. Let vectors F and D be one frame of color and depth video,
respectively. Motion mask Mm is extracted from the differences
among temporally successive frames. We segment foreground
regions Mf from the background regions by using a threshold,
and the background regions are set as non-interested regions.
Then, contours mask of color video, Mc, and depth discontinuous
regions, Md, are acquired by using edge detection algorithm.
Step 2. Because moving object and depth discontinuous regions
are usually ROIs, we construct these two regions as a characteris-
tic region, Mf\[Mm[Md], which will be used as seeds of determin-
ing ROI depth planes. On the basis of the histogram value of the
depth in Mf\[Mm[Md] regions, the depth image D is divided into



Fig. 3. Flowchart of the proposed DBDE algorithm.

Fig. 4. Comparisons on pictures of different views.
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several depth planes Dz according to the mean and variance of the
histogram, where z is the ordinal number of the depth plane.
Step 3. The DP-ROI contours are constructed by integrating
foreground motion region, depth contour and color contour,
i.e. Mf\[Mm[Md[Mc]. Then, morphological process, contour
recovery and noise elimination operations are performed on
Mf\[Mm[Md [Mc] to build a closed and more reliable DP-ROI
contours, Ml.
Step 4. To exclude the background regions in Dz, a boundary
scanning process guided by Ml is conducted on depth planes Dz

by supposing image boundaries are background. Bit allocation
and dynamic computational power allocation are performed on
each MB for block-based MVV encoder. Therefore, a MB-wise
DP-ROI mask is generated based on the extracted DP-ROI. The
extraction process in DBDE is 8�8 block-based and most opera-
tions are simple logic operations for low-complexity.

3.3. Inter-view DP-ROI extractions

MVV sequences are captured from the same scene by a camera
array in which cameras are in different positions. There are intrin-
sic inter-view dependencies among views but not simply a global
shift. Fig. 4 shows comparisons on pictures in different views of
Ballet sequence, captured by 1D-arc camera arrangement. Gener-
ally, two pictures in ith view and jth view are similar and there
are high inter-view correlations among the two pictures. After
DP-ROIs of one view, e.g. ith view, have been extracted, we can take
advantage of them to extract corresponding DP-ROIs in another
neighboring view, e.g. jth view. However, the relative distance be-
tween the girl and the wallpaper are obviously different in two
views, shown as the circle marked as ‘1’ in Fig. 4. It is the relative
position displacements between views. In addition, there are
occlusion and disclosing problems in the pictures, shown as the
circle marked as ‘2’ and ‘3’ in Fig. 4. The simplest approach is
adopting global disparity to calculate the global offsets and find
the corresponding DP-ROI. It cannot tackle MVV sequences cap-
tured by 1D-arc camera arrangement and multiple DP-ROIs with
different depth values. To tackle the above mentioned situations
and extract DP-ROIs in neighboring views efficiently, we propose
inter-view ROI tracking method based on depth information.

Let Q = (X, Y, Z) be a point in the world coordinate system,
qa = (xa, ya) be coordinate of a pixel, projected from Q, on image
plane a, qb = (xb, yb) be coordinate of a projected pixel on the image
plane b. Let XROI be a set of DP-ROIs’ coordinates in the world coor-
dinate and XW

ROI be a set of DP-ROIs’ coordinates in image plane W,
W e {a, b}. Let �Q = (X, Y, Z, I), �qa ¼ ðxa; ya; IaÞ and �qb ¼ ðxb; yb; IbÞ be
augmented vectors of Q, qa and qb, i.e. Ia and Ib are the pixel value
projected from I. Then the projection equations result to

sa �qa ¼ Aa � P �
Ra ta

0 1

� �
� �Q

sb �qb ¼ Ab � P �
Rb tb

0 1

� �
� �Q

8>>><
>>>:

ð1Þ

where Q e XROI, P is a 3 � 4 normalized perspective projection ma-
trix and sa and sb are scalars. The rotations, Ra and Rb, and the trans-
lations, ta and tb, form a 4 � 4 matrix that transforms a 3D point
from the world coordinate into the camera coordinate of the image
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plane. Aa and Ab are matrixes that specify the intrinsic parameters
of the a and b camera, respectively.

From Eq. (1), if DP-ROI of the ath view has been extracted, the
DP-ROI in the bth view can be expressed as

Zb �qb ¼ ZaAbRbR�1
a A�1

a
�qa � AbRbR�1

a ta þ Akta if qa 2 Xa
ROI; ð2Þ

where Za and Zb are the corresponding depth values of qa and qb,
qb 2 Xb

ROI. According to Eq. (2), the coordinate qb is determined by
qa and Za, and it is rewritten as �qb ¼ Gð�qa; ZaÞ for short, where G
is the mapping function represented as Eq. (2).

Let �qþa ¼ ðxa þ ex; ya þ ey; I
þ
a Þ be a neighboring point of �qa, where

ex and ey are offsets in x-axis and y-axis, Iþa is pixel value at position
(xa + ex, ya + ey) in plane a, Iþb is pixel value at position (xb + ex, y-
b + ey) in plane b. Let Zþa be depth value at position (xa + ex, ya + ey).

If �qþa 2 Xa
ROI, we can get the pixel corresponding to �qþa on image

plane b, �qþb 2 Xb
ROI, and �qþb is calculated as

�qþb ¼ Gð�qþa ; Z
þ
a Þ: ð3Þ

Let �qþb ¼ ðxb þ ex; yb þ ey; I
þ
b Þ be a neighboring point of �qb. Because

depth image is relatively smooth and with high spatial correlation
among neighboring pixels in the interior region of DP-ROI, �qþb is
approximate to �qþb when |ex| and |ey| are smaller than Tex and Tey.

�qþb � �qþb
s:t:jexj 6 Tex; jeyj 6 Tey

�
: ð4Þ

It is especially true when ex and ey are small, e.g. 0 or ±1. Only part
of DP-ROIs’ pixels in the image plane b needs the projection as Eq.
(2), other pixels corresponding to �qþa 2 Xa

ROI are directly calculated
by Eq. (4) instead of Eq. (3). Thus, the computational complexity
of DP-ROI extraction in view dimension can be efficiently reduced
by jointly using Eqs. (2) and (4). Finally, small holes are filled by
applying averaging filter. DP-ROI is blocklized into MB, and MB-
wise DP-ROI masks are generated for block-based MVC.

3.4. DP-ROI extraction based on temporal prediction

In content based video coding, it is essential to develop a fast
ROI extraction algorithm as a pre-processing stage of video coding.
We present a fast DP-ROI extraction approach for temporal succes-
sive frames in this subsection. In terms of the size and locations of
temporal preceding extracted DP-ROIs, we can determine predic-
tive windows of DP-ROIs in current frame. Then, DBDE algorithm
is performed to refine DP-ROIs within the predictive windows.
The areas out of the predictive windows are directly set as back-
ground. As a result, more processing time can be saved as the ini-
tial windows are precisely predicted.

Let Wk,t (xk,t, yk,t, wk,t, hk,t) be a rectangle window of the kth DP-
ROI in the frame at time t, where (xk,t, yk,t) is coordinate of the cen-
troid of Wk,t, and wk,t and hk,t are the width and height of Wk,t. Let
W0

k,t (x0k,t, y0k,t, w0k,t, h0k,t) be a predictive window of the kth DP-ROI
in the frame at time t. (x0k,t, y0k,t) is coordinate of the centroid of
W0

k,t, w0k,t and h0k,t are the width and height of W0
k,t. We predict

W0
k,t from DP-ROI windows of the previous p frames. The center

of W0
k,t is calculated by

x0k;t ¼
Pp
i¼1

nk;t�iðxk;t�i � xk;t�i�1Þ þ xk;t�1

y0k;t ¼
Pp
i¼1

1k;t�iðyk;t�i � yk;t�i�1Þ þ yk;t�1

8>>><
>>>:

; ð5Þ

The width and height of W 0
k;t are predicted as

w0k;t ¼ kw �
Pp
i¼1

ak;t�iwk;t�i

h0k;t ¼ kh �
Pp
i¼1

bk;t�ihk;t�i

8>>><
>>>:

; ð6Þ
where ak,t-i, bk,t-i, nk,t-i and fk,t-i are weighting coefficients, k/ is win-
dow size scaling coefficient correlated with motion magnitude and
it is calculated as

k/ ¼ 1þmaxð0; h� ð/k;t�1 � /k;t�2ÞÞ=/k;t�1; / 2 fw; hg ð7Þ

where h is a scaling coefficient. In DP-ROI prediction, motions are
divided into two categories, simple and complex. For simple mo-
tion, such as slow motion or shifting, DP-ROI size and location of
t + 1 can be efficiently and precisely predicted, and k/ is set as 1.0.
For complex fast motion, such as fast non-rigid motion or irregular
motion, k/ is enlarged in terms of window size variance to guaran-
tee DP-ROI is located within W0

k,t.
4. DP-ROI based bit allocation optimization for MVC-HBP
prediction structure

In HVS, more attentions will be paid to ROIs then background.
Thus, the distortion in ROIs is more perceptible than that of back-
ground even though they have the same distortion values. There-
fore, more bits should be allocated in ROIs to improve image
quality, and fewer bits are allocated to background region for
high compression ratio. Chi et al. proposed a ROI video coding
scheme based on rate and distortion variations, in which blurring
matrices are applied to reduce the high frequency information of
background region, and then the required bits for background re-
gion also decreased by using fuzzy logical rate controller [25].
Similar bit allocation strategy is also presented in [16] for ROI
based single-view video coding. However, these bit allocation
schemes were proposed for single-view video coding and cannot
be directly applied to MVC because inter-view prediction is also
adopted in MVC.

In the presented RMVC scheme, an inter-view and temporal
prediction hybrid prediction structure, MVC-HBP prediction
structure [13], is adopted for high compression efficiency. Then,
different quantization parameters (QPs) are set for DP-ROIs,
background regions and transitional regions, where transitional
regions are one or two MB wide regions between DP-ROIs and
background regions. These regions are designed to make image
quality changes smoothly. DP-ROIs are coded with QP, QPl

ROI,
determined by

QPl
ROI ¼

bQP þ 3 if l ¼ 1
QPl�1

ROI þ 1 if l > 1

�
; ð8Þ

where bQP is the basis QP of MVC-HBP prediction structure, l is hier-
archical level of the picture in a GOP. QPs of background and tran-
sitional regions in the lth hierarchical level picture, QPl

BG and QPl
T ,

are set as

QPl
BG ¼ QPl

ROI þ DQP

QPl
T ¼ QPl

ROI þ bDQP=gc

(
; ð9Þ

where ‘b�c’ is floor operation, g is a parameter bigger than 1.0, DQP is
a QP difference between background region and DP-ROI.

RMVC scheme is on the purpose of maximizing compression ra-
tio and image quality in ROIs while at the cost of the image quality
in background. So, we need to determine the optimal DQP which
indicates the relative amount of bits allocated between ROIs and
background regions. To this end, we use two quality indices, aver-
age Bit-rate Saving Ratio (BSR), RBSR, and image quality degrada-
tion, DD, to represent the coding performance of RMVC scheme.
The BSR, which is denoted by RBSR(bQP, DQPROI, DQPBG), is calcu-
lated as



RBSRðbQP;DQPROI;DQPBGÞ ¼
1

N �M

XN

j¼1

XM

i¼1

EBi;jðQPl
ROI;QPl

ROIÞ � EBi;jðQPl
ROI þ DQPROI;QPl

ROI þ DQPBGÞ
EBi;jðQPl

ROI;QPl
ROIÞ

; ð10Þ
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where N and M are the numbers of views and time instants in one
GOP, and i and j are temporal and inter-view position.
EBi,j(QP1, QP2) stands for the encoding bits of frame (i, j), whose
ROIs are coded with QP1 and background regions are coded with
QP2. DQPROI and DQPBG denotes an additive value to QP in ROI
and background regions, respectively. Fig. 5 shows the relationship
between RBSR(bQP, DQP, DQP) and DQP. RBSR(bQP, DQP, DQP) is
approximate to exponential decaying function as DQP increases.
Thus, RBSR(bQP, DQP, DQP) can be predicted as

RBSRðbQP;DQP;DQPÞ ¼ A0e�
DQP

T þ y0; ð11Þ

where A0 and T are coefficients, which are correlated with bQP but
independent to the contents of MVV. y0 is the maximum BSR. Be-
cause ROI and background regions are not mutually exclusive, we
can get

RBSRðbQP; DQP; DQPÞ ¼ RBSRðbQP; 0; DQPÞ
þ RBSRðbQP; DQP; 0Þ: ð12Þ

Once, ROI and background regions are segmented for MVV se-
quence, the BSR of ROI is approximately direct proportional to that
of background region while DQP increases. The proportion is repre-
sented by

q ¼ RBSRðbQP; 0; DQPÞ
RBSRðbQP; DQP; 0Þ ; ð13Þ

where q is independent to DQP. Hence, applying Eqs. (12) and (13)
to Eq. (11), we can obtain

RBSRðbQP; 0; DQPÞ ¼ Ae�
DQP

T þ y; ð14Þ

where A ¼ 1
1þq A0 and y ¼ 1

1þq y0. |A| indicates amplitude of bit-rate
saving. T indicates a DQP period of BSR becoming saturated.

Moreover, image quality degradation will caused by allocating
fewer bits on background regions. Let DD(bQP, 0, DQP) be the im-
age quality degradation and it can be calculated by

DDðbQP;DQPROI;DQPBGÞ ¼
1

N �M

XN

j¼1

XM

i¼1

� Q i;jðQPl
ROI þ DQPROI;QPl

ROI þ DQPBGÞ � Q i;jðQPl
ROI;QPl

ROIÞ
h i

; ð15Þ
Fig. 5. The relationship between RBSR(bQP, 0, DQP) and DQP.
where Qi,j(QP1, QP2) stands for the reconstructed image quality of a
frame at position (i, j) while ROIs are coded with QP1 and back-
ground regions are coded with QP2. DQPROI and DQPBG denote QP
changes in ROI and background regions, respectively. Because the
relationship between distortion, such as peak signal-to-noise ratio
(PSNR), and quantization factor is approximately linear [26], we de-
fine the image quality degradation of bit allocation,
DD(bQP, 0, DQP), as

DDðbQP; 0; DQPÞ ¼ b1 � DQP þ a1; ð16Þ

where a1 is coefficient independent to DQP but correlated with bQP.
DD(bQP, 0, DQP) is negative and the value will decrease as DQP
increases.

To achieve high compression ratio and maintain high image
quality, we shall find the optimal DQP to maximize BSR RBSR sub-
ject to a unnoticeable image quality degradation, TD. It is mathe-
matically expressed as

arg maxfRBSRðbQP; 0; DQPÞg
s:t:jDDðbQP; 0; DQPÞj < TD

�
: ð17Þ

Instead of solving the constrained problem in Eq. (17), an uncon-
strained formulation is employed. That is

arg
DQP2Zþ

maxfRBSRðbQP; 0; DQPÞ þ l � DDðbQP; 0; DQPÞg; ð18Þ

where l is a scaling constant putting RBSR and DD in a same scale,
DQP is a positive integer. We set the partial derivative of function
RBSR(bQP, 0, DQP) + l DD (bQP, 0, DQP) of DQP equal to 0, that is

@ðRBSRðbQP; 0; DQPÞ þ l � DDðbQP; 0; DQPÞÞ
@DQP

¼ 0: ð19Þ

Solving the Eq. (19), we calculate the optimal integer DQP as

DQP ¼ bT ln
A

l � T � b1
þ 0:5c: ð20Þ

where ‘b�c’ is floor operation. Meanwhile, DQP is clipped to 0 if DQP
is smaller than 0. Coefficients A, T and b1 relies on bQP and will be
experimentally determined by coding experiments in Section 6.2.
5. ROI based objective image quality assessment metric

Pixel-wise image quality assessment metric, such as PSNR and
Structural SIMilarity (SSIM), is not designed to match with human
visual perception. It is originally designed for quality assessment of
a whole distorted image ID as compared to a whole reference image
IR without notice different human visual sensitivity between ROI
and background regions. Engelke et al. proposed region-selective
objective image quality metrics which is able to be combined with
normalized hybrid image quality metric, reduced reference image
quality assessment technique, SSIM or PSNR measures [27].

Both SSIM and PSNR have been adopted in current advanced vi-
deo coding standard, H.264/AVC [28]. Thus, we use the region-
selective SSIM and PSNR metrics to evaluate image quality of
reconstructed frames. SSIM index between two images is com-
puted as

SSIM ¼ ð2lRlD þ C1Þð2rRD þ C2Þ
ðl2

R þ l2
D þ C1Þðr2

R þ r2
D þ C2Þ

; ð21Þ



Table 1
Properties of test MVV sequences.

MVVs Provider Size Frame rate/
baseline/
camera array

Features

Ballet MSR 1024 � 768 15 fps/20 cm/
1D-arc

Both fast
motion and
slow motion

Breakdancers 1024 � 768 15 fps/20 cm/
1D-arc

Very fast
motion

Dog Nagoya
University

1280 � 960 30 fps/5 cm/1D Slow motion,
large image
size

Doorflowers HHI 1024 � 768 16.7 fps/
6.5 cm/1D

Slow motion,
complex
texture

Alt Moabit 1024 � 768 16.7 fps/
6.5 cm/1D

Outdoor scene,
fast motion

504 Y. Zhang et al. / J. Vis. Commun. Image R. 21 (2010) 498–512
where R and D are two nonnegative image signals to be compared,
lR and lD are mean of images R and D, respectively, rR and rD are
standard deviation of images R and D, respectively, and rRD is
covariance of images R and D. The PSNR of illumination component,
denoted by PSNR_Y, measures the fidelity difference of two image
signals IR(x,y) and ID(x,y) on a pixel-by pixel basis as

PSNR Y ¼ 10 log 2552

MSE

MSE ¼ 1
MN

PM
x¼1

PN
y¼1
½IRðx; yÞ � IDðx; yÞ�2

8><
>: : ð22Þ

The objective image quality metrics have been used to indepen-
dently assess the image quality of ROI and background region to en-
Fig. 6. Eight views of te
able region-selective quality metric design. An ROI quality metric
UROI is calculated on ROI of reference and distorted images. Simi-
larly, background regions of reference and distorted images are
used to assess quality of the background region by computing
UBG. In a pooling stage, UROI and UBG are combined to a region-
selective metric, and the final Predictive Mean Opinion Score
(PMOS) is computed as

Uðx;j; mÞ ¼ ½x �Uj
ROI þ ð1�xÞUj

BG�
1
m

PMOSUðx;j;mÞ ¼ a � eb�Uðx;j;mÞ

U 2 fSSIM; PSNR Yg
x 2 ½0;1�;j; m 2 Zþ

8>>>><
>>>>:

; ð23Þ

where x, j, m, a and b are derived from the subjective quality eval-
uation experiments in [27]. In the following sections, PMOSs of
PSNR_Y and SSIM are denoted by PMOS_PSNR and PMOS_SSIM,
respectively.

6. Experimental results and analyses

In this section, performances of DP-ROI extraction algorithms
and RMVC scheme are evaluated. The experiments have three sub-
parts: (1) DP-ROI extraction experiments, (2) bit allocation optimi-
zation experiments and (3) MVC video coding experiments. Five
MVV sequences, Ballet, Breakdancers, Dog, Doorflowers and Alt
Moabit provided by Microsoft Research, Nagoya University and
HHI, are selected for both ROI extraction experiments and MVC
coding experiment. Table 1 shows the properties of test MVVs
and Fig. 6 shows the eight views of the MVV sequences. They have
different motion features, camera baselines, capturing frame rates,
resolutions and indoor/outdoor video contents.
st MVV sequences.
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6.1. DP-ROI extraction experiments

The DP-ROI extraction experiments include three phases, (1)
DP-ROI in the center view is extracted by using the DBDE method.
(2) DP-ROIs in neighboring views are extracted by using inter-view
tracking and previous extracted view neighboring DP-ROIs; (3) DP-
ROIs extraction for temporal successive frames.
6.1.1. DP-ROI extractions by DBDE
Fig. 7 illustrates the extracted DP-ROIs of the 4th view and 10th

frame (denoted as the white rectangle in Fig. 2(d)) of Ballet se-
quence by using the DBDE method. Fig. 7(a) is the original image
of Ballet sequence, and Fig. 7(b) shows the mask Ml generated by
integration of motion, contour and depth discontinuities in fore-
ground. It is the block-based contour of DP-ROI. In block-based vi-
deo coding process, MB is the minimal unit of bit allocation. Thus,
only MB-wise accuracy is required in the DP-ROI extraction. Addi-
tionally, to lower the complexity of DP-ROI extraction, 8 � 8 block-
based operations are performed in the extraction processing for
low-complexity. Fig. 7(c and d) shows two depth planes, Dz, at
which DP-ROI may locate. Fig. 7(e) is the finally extracted DP-ROIs.
Generally, the extracted DP-ROIs cover almost all defined DP-ROIs
and exclude most background regions. Additionally, the moving
shadow of the female dancer is excluded by DBDE. Fig. 7(f) shows
the MB-wise mask of DP-ROI corresponding to Fig. 7(e). The black
blocks are DP-ROI blocks, gray blocks are the transitional regions
and white regions are background. Figs. 8 illustrate other extracted
results in the 4th view (25th, 40th, 55th and 70th frame) and all of
the extraction results are satisfying and with high accuracy. Similar
results can be obtained for other four test MVV sequences.

There are more than 13 kinds of MB modes, including DIRECT,
MOTION_SKIP, INTER_16 � 16, INTER_16 � 8, INTER_8 � 16, IN-
TER_8 � 8, INTER_8 � 8Frext, INTER_4 � 8, INTER_8 � 4, IN-
TER_4 � 4, INTRA_16 � 16, INTRA_8 � 8 and INTRA_4 � 4 etc., are
adopted in JMVM. The mode with minimal rate distortion cost will
be selected as the best mode to code MVV sequence for each MB.
Because of high inter-view and temporal correlations of the MVV
sequence, most MBs (over 60% in [29]) are coded with DIRECT
mode, in which no residual are coded and transmitted. That means
these MBs coded with DIRECT mode are independent to bit alloca-
tion as QP changes. Therefore, segmented regions that will be
Fig. 7. Extracted results by using DBDE metho
coded with DIRECT mode in RMVC will not have impacts on coding
efficiency.

6.1.2. DP-ROI extractions in view dimension
Only partial pixels of DP-ROIs (i.e. 1/[(Tex + 1) � (Tey + 1)]) in the

5th view are projected from DP-ROIs of the 4th view point by
point. The rest of pixels are calculated as Eq. (4). Then, the ex-
tracted DP-ROIs are blocklized into MBs. Fig. 9 shows the cases that
DP-ROIs of 5th view tracks from the DP-ROIs of the 4th view with
different Tex and Tey. As Tex and Tey increase, the DP-ROI extraction
accuracy decreases. Meanwhile, the computational complexity de-
creases. We can see that almost identical MB-wise DP-ROI masks
can be generated when Tex and Tey are smaller than 3. In the extrac-
tion experiments, Tex and Tey are set as 1 to reduce 75% complexity
and sustain the DP-ROI extraction accuracy.

Fig. 10 shows DP-ROIs of another four neighboring views (the
2nd, 3rd, 5th and 6th view) at the 10th time instants. DP-ROIs with
different depth projected to neighboring views are with different
relative positions which can be precisely calculated by the pro-
posed method. Though there are some holes near the edges of ob-
jects due to the occlusion among the views, average filtering and
blocklized operation can fill small holes and relieve the occlusion
problem. For large holes, which only occur in the MVV with large
occlusion, they can be filled by using bi-directional inter-view
tracking and smoothing operation at cost of doubled computa-
tional complexity. Here, we do not adopt bi-directional inter-view
tracking for low-complexity. Meanwhile, the extracted DP-ROIs are
accurate enough and fulfill the accuracy requirement of MB based
bit allocation optimization. In summary, the DP-ROI extraction re-
sults have shown that the proposed inter-view DP-ROI extraction
method extracts satisfying DP-ROIs for neighboring views.

6.1.3. DP-ROI extraction based on temporal prediction
In the experiments, p is set as 3, which means previous DP-ROIs

in three temporal preceding frames are adopted to predict the loca-
tions of the DP-ROI in current frame. Other parameters are empir-
ically set as ak,t�1 = 0.6, ak,t�2 = 0.2, ak,t�3 = 0.2, bk,t�1 = 0.6,
bk,t�2 = 0.2, bk,t�3 = 0.2, nk,t�i = 0.33 and nk,t�i = 0.33, h is set as 2.
Fig. 11 shows DP-ROI extraction results of temporal four successive
frames, the 11th to 14th frames, in the 4th view of the Ballet se-
quence. As for Ballet sequence, the female dancer rotates and
moves fast while the man moves very slowly. Low capture frame
d (Ballet sequence, 4th view, 10th frame).



Fig. 8. Extracted results by using DBDE method (Ballet sequence, 4th view, 25th, 40th, 55th and 70th frame).

Fig. 9. Inter-view DP-ROI tracking and extraction results with different Tex and Tey.
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rate (15 frames per second) leads to high relative motion among
successive frames and it makes the temporal ROI tracking chal-
lenging. The experimental results show that, by using the proposed
ROI extraction scheme, the DP-ROIs are tracked and extracted well
for both slow moving object (the man) and fast moving object (the
dancing girl). Furthermore, it reduces the extraction complexity
and makes temporal DP-ROIs consistent by implementing DBDE
within predicted windows instead of whole images. Three phases
DP-ROI extraction experiments are also tested for other MVV se-
quences, including Breakdancers, Dog, Doorflowers and Alt Moabit
sequences and similar DP-ROI results are found.
6.2. DP-ROI based bit allocation optimization for MVC

To determinate the optimal DQP used in the RMVC scheme,
coding experiments are implemented on JMVM7.0 with MVC-
HBP prediction structure, bQP and DQP are set as bQP 2
{12, 17, 22, 27, 32, 37} and DQP 2 {0, 2, 4, 6, 8, 10, 12}, respectively.
g is empirically set as 3 and 6 for first and second level transitional
areas. Moreover, region-selective objective image quality metrics
[27] are adopted to evaluate image quality. All the encoding QPs
for hierarchical B pictures with different levels are clipped from 0
to 51.



Fig. 10. Extracted ROI of the neighboring views of the 10th frame, Ballet.

Fig. 11. DP-ROI of the time successive frames in the 4th view, Ballet.
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Fig. 12 show the relation maps of RBSR(bQP, 0, DQP) to DQP for
Ballet and Breakdancers sequences. As shown in Fig. 12, more
bit-rate is saved as DQP becomes larger. However, on one hand,
the gradient of RBSR(bQP, 0, DQP) decreases as DQP increases. The
BSR satisfies the exponential decaying function described by Eq.
(14) as DQP increases. On the other hand, the gradient and up-
bound of BSR decreases as bQP increases. As bQP is larger than
27 and DQP is larger than 8, the BSR even decreases as DQP in-
creases. It is because the encoding bits of DQP cannot be neglected.
Figs. 13 and 14 show the relationships between bQP and coeffi-
cients T and A. |A| indicates amplitude of BSR and decreases as
bQP increases. As bQP increases, the up-bound of BSR decreases
to zero and almost no coding gain can be expected while bQP is
bigger than 35. T indicates the DQP period of bit-rate saving
becoming saturated. As bQP increases, the BSR’s DQP period of
being saturated is getting larger. Each point in the figures is the
coefficient T fitted from each curve of Fig. 12 by using exponential
function in Eq. (14). The red points are the coefficients fitted from
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Ballet sequence and the black points are fitted from Breakdancers
sequence. We fit the obtained points in Figs. 13 and 14 using a lin-
ear function and obtain T and A as

T ¼ a1 þ b1 � bQP
A ¼ a2 þ b2 � bQP

�
; ð24Þ

where a1 = 5.143, b1 = �0.091, a2 = �0.656 and b2 = 0.019.
In term of evaluating image quality of the reconstructed images,
we use PMOS_PSNR, that is Qi,j in Eq. (15) is derived from Eq. (23)
and U is PSNR_Y. Fig. 15 illustrates the relation maps of average
PMOS_PSNR value to DQP. The y-axis is the average PMOS_PSNR
and x-axis is DQP. Each line in the figure has the same bQP but dif-
ferent DQP. We can see that PMOS_PSNR linearly decreases as DQP
increases for Breakdancers sequence. Additionally, the slope of im-
age quality degradation is getting gentle as bQP increases. Similar
results can also be found for Ballet sequence. Fig. 16 shows the
relationship between bQP and coefficient b1, which indicates slope
of image quality degradation, DD(bQP, 0, DQP). Each point in the
figure is the coefficient b1 fitted fromDD(bQP, 0, DQP) by using lin-
ear function in Eq. (16). The red points are the coefficients, b1, fitted
from Ballet sequence and the black points are b1 fitted from
Breakdancers sequence. We fit these b1 points in Fig. 16 using
exponential decaying function and obtain

b1 ¼ a3 þ b3e�
bQP
c3 ; ð25Þ

where a3 = �0.0876, b3 = �31.911 and c3 = 2.044.
Applying Eqs. (24) and (25) to Eq. (20), we can acquire the opti-

mal and integer DQP for different ls, shown as Fig. 17. For different
ls, the changing tendency of DQP is almost the same. However, the
maximum value of DQP increases as l decreases. We empirically
set l = 0.08 for scaling BSR and image quality degradation in the
same scale. Then, the final optimal DQPs are obtained while bQP
ranges 12–33, as shown in Fig. 17. For low bQP, e.g. bQP < 15, sig-
nificant bit-rate saving can be saved by choosing large DQP. How-
ever, the image quality is also degraded significantly. Thus, DQP is
reasonable to be smaller than 8 so that a wise tradeoff between
BSR and image quality degradation can be achieved. As for large
bQP, e.g. bQP > 33, most MBs in background regions are already
coded with DIRECT mode, in which no residuals are coded, and al-
most coding gain can be expected by enlarging DQP. In some cases,
the BSR decreases as DQP increases because the encoding bits of
DQP increase and they are not neglectable. Furthermore, larger
DQP causes larger quantization error. Therefore, it is reasonable
to limit DQP within the range from 0 to 2 at low bit-rate (large bQP).

6.3. DP-ROI based multiview video coding

MVC experiments are implemented on JMVM 7.0 reference soft-
ware with the MVV sequences, Ballet, Breakdaners, Dog, Doorflow-
ers and Alt Moabit, to evaluate the coding performance of the
RMVC scheme. The MVC-HBP prediction structure is adopted for
MVC simulation. GOP Length is 15, 8 views. There are three kinds
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of picture in MVC-HBP prediction structure: intra coded picture (I-
picture), inter-predicted picture (P-picture) and hierarchical bi-
directional predicted picture (B-picture). Here, we define two
RMVC encoding modes denoted by ‘‘RMVC_IBP” and ‘‘RMVC_BP”.
In RMVC_IBP, all the three kinds of frames except the first I-picture
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Fig. 18. Rate-distortion performances co
are coded with the proposed RMVC scheme with the bit allocation
optimization. In RMVC_BP, all B and P-pictures are coded with
RMVC scheme with bit allocation optimization and I-pictures are
coded with original MVC scheme without bit allocation optimiza-
tion. The bQP are set as 17, 22, 27 or 32, and the QPs of background
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and ROI regions are set according to Eq. (9) and Fig. 17. Regional
selective objective quality metrics in Section 5, PMOS_PSNR and
PMOS_SSIM, are adopted to evaluate image quality of recon-
structed frames.
0 2000 4000 6000 8000 10000
62

64

66

68

70

72

Av
er

ag
e 

PM
O

S_
SS

IM

Bitrate (Kbps)

 JMVM
 RMVC_IBP
 RMVC_BP

(a)Breakdancers            

Fig. 19. Rate-distortion performances co

Fig. 20. Subjective and objective quality comparison of th
Figs. 18 and 19 show coding performance comparison between
the proposed RMVC and JMVM. Curves in the Figs. 18 and 19 are
fitted with the algorithm provided in [30]. For Breakdancers se-
quence, the encoding performances of RMVC_IBP and RMVC_BP,
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e reconstructed images (Ballet, 4th view, 15th frame).
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evaluated by PMOS_PSNR, are better than JMVM at high bit-rate.
As the reconstructed images are evaluated with PMOS_SSIM, sig-
nificant coding gain is achieved by RMVC_IBP and RMVC_BP. In
other words, up to 30% bit-rate can be saved at high rate while
comparing with JMVM. Meanwhile, the average coding perfor-
mance of RMVC_IBP is a little superior to that of RMVC_BP. Similar
results are obtained for other sequences. For Ballet, Dog, Doorflow-
ers and Alt Moabit sequences, while measured with PMOS_PSNR,
RMVC outperforms JMVM at high bit-rate and maintains the same
performance at low bit-rate. Additionally, as for the cases that dis-
tortion are measured by PMOS_SSIM, we can see that significant
coding gains, over 20% bit-rate saving, are achieved by the pro-
posed RMVC. Bit-rate saving mainly comes from moving area in
background. However, in low bit-rate coding experiments, the
most MBs in background regions are already coded with DIRECT
mode or quantized with large QPs. In that case, enlarging QP, i.e.
introducing larger DQP, can scarcely reduce encoding bits of quan-
tized coefficients but increase number of bits of encoding DQP.

Figs. 20 and 21 show image quality comparison between the
reconstructed images coded by RMVC_BP and original JMVM. It
shows the reconstructed results of the 15th frame of the 4th view
of the test MVV sequences. Encoding bits and five image quality
indices including PSNR_YROI, PSNR_YBG, PSNR_Y, PMOS_SSIM and
PMOS_PSNR are compared for the coded picture of each sequence.
PSNR_YROI, PSNR_YBG and PSNR_Y indicate the PSNR of illumina-
tion component in DP-ROIs, background and the entire picture,
respectively. PMOS_PSNR and PMOS_SSIM represent the PMOS of
PSNR_Y and SSIM, respectively. In addition, the difference of the
image quality indices are also given and they are computed as
Fig. 21. Subjective and objective quality comparison of the rec
DH ¼ HProposed �HJMVM

DEBi;j ½%� ¼
EBi;j

JMVM�EBi;j
Proposed

EBi;j
JMVM

� 100 ½%�

8<
: ; ð26Þ

where H 2 {PSNR_YROI, PSNR_YBG, PMOS_PSNR, PMOS_SSIM}, DEBi,j

is the BSR for the proposed RMVC scheme while encoding the pic-
ture at (i,j) position of a GOP. EBi;j

JMVM and EBi;j
RMVC BP denote encoding

bits of the coded pictures by using JMVM and the proposed
RMVC_BP method, respectively.

Because people pay less attention to background regions and
more attention to DP-ROIs, HVS is less perceptible to distortion in
background regions than that of DP-ROIs. That means people require
high image quality in DP-ROIs. However, for Ballet sequence coded
by JMVM, the PSNR of ROI and background are 40.91 and 42.24 dB,
i.e. PSNRROI < PSNRBG, which is not coincident with the requirement
of HVS. With regard to the proposed RMVC_BP, the PSNR of ROI and
background are 41.38 and 41.32 dB. DPSNR_YROI is 0.47 dB while
DPSNR_YBG is �0.92 dB. It means that the proposed RMVC_BP
improves image quality of DP-ROIs up to 0.47dB; meanwhile,
RMVC_BP allocates fewer bits on background regions for higher
compression ratio at the cost of its PSNR_YBG. Additionally, the image
quality of DP-ROI is getting better than that of background region,
i.e. PSNR_YROI > PSNR_YBG, which meets the requirements of HVS.
The quality of the reconstructed images is improved. As the recon-
structed image is evaluated by the region-selective metrics,
DPMOS_SSIM is 0.79 while DPMOS_PSNR is �0.47. It means a tiny
and imperceptible difference between the image quality of recon-
structed images coded by RMVC_BP and JMVM. However, the
important and interesting thing is that DEB4,15 is 18.17%. That is
onstructed images (Breakdancers, 4th view, 15th frame).
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18.17% fewer bits are utilized to encode the picture while comparing
with JMVM. Fig. 20(c and d) shows the enlarged the white rectangle
located area of Fig. 20(a and b). They show the subjective quality of
parts of transitional area between DP-ROI and background regions.
There is no block artifact and other artifacts in the transitional area
by using the proposed bit allocation optimization comparing with
JMVM.

For Breakdancers sequence, DPSNR_YROI is 0.68 dB and
DPSNR_YBG is �1.04 dB while DEB4,15 is 14.22%. It shows that
14.22% bit-rate is saved and image quality of DP-ROI is signifi-
cantly improved at the cost of image quality degradation in the
background regions only. PMOS_PSNR shows there is impercepti-
ble difference between the reconstructed images of Breakdancers
coded by RMVC_BP and JMVM. The other region-selective image
quality metric, PMOS_SSIM, shows that the reconstructed image
quality of Breakdancers coded by RMVC_BP is better than coded
by JMVM. Also, up to 14.22% BSR is achieved. From the subjective
image quality comparison of the reconstructed frames, it can be
seen that the image quality coded by RMVC_BP is almost the same
as JMVM. There is also no block artifact and other artifacts in the
transitional area for Breakdaners sequence, as shown in Fig. 21(c
and d). Similar results can be found for Doorflowers, Alt Moabit
and Dog sequences. Up to 19.44–23.32% bit-rate is saved and qual-
ity of DP-ROI are improved 0.16–0.56 dB at the cost of image qual-
ity degradation in background.

In summary, the proposed RMVC scheme can achieve signifi-
cant BSR, up to 14.22–23.32%, while the image quality of DP-ROI
are improved 0.16–0.68 dB at the cost of the image quality degra-
dation in background regions. Region-selective image quality met-
rics indicate that the proposed RMVC scheme can achieve
significant BSR with imperceptible image quality degradation.
7. Conclusions

A framework of Depth Perceptual Region-Of-Interest (DP-ROI)
based Multiview Video Coding (RMVC) has been proposed to im-
prove compression efficiency significantly by properly segmenting
the multiview video into different MB-wise DP-ROI and encoding
them separately. Novel low-complexity DP-ROI extraction algo-
rithms have also been proposed in this paper. The proposed depth
based DP-ROI extraction algorithms maintains both low-complex-
ity and high accuracy. Additionally, according to the extracted DP-
ROI, a DP-ROI based bit allocation optimization algorithm is pro-
posed for multiview video coding where inter-view and temporal
predictions are jointly utilized for high compression efficiency. It
is able to allocate more bits on DP-ROIs for maintaining high image
quality and fewer bits on background and transitional regions for
achieving high compression ratio. The proposed RMVC scheme
achieves significant coding gain at the high rate while comparing
with the joint multiview video model. To be specific, up to
14.22–23.32% bit-rate are saved while 0.16–0.68 dB coding gains
are achieved in DP-ROIs at the cost of the image quality degrada-
tion in background.
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