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Abstract—INTRA video coding is essential for high quality
mobile video communication and industrial video applications
since it enhances video quality, prevents error propagation, and
facilitates random access. The latest high-efficiency video cod-
ing (HEVC) standard has adopted flexible quad-tree-based block
structure and complex angular INTRA prediction to improve
the coding efficiency. However, these technologies increase the
coding complexity significantly, which consumes large hardware
resources, computing time and power cost, and is an obstacle for
real-time video applications. To reduce the coding complexity and
save power cost, we propose a fast INTRA coding unit (CU) depth
decision method based on statistical modeling and correlation
analyses. First, we analyze the spatial CU depth correlation with
different textures and present effective strategies to predict the
most probable depth range based on the spatial correlation among
CUs. Since the spatial correlation may fail for image boundary
and transitional areas between textural and smooth areas, we
then present a statistical model-based CU decision approach in
which adaptive early termination thresholds are determined and
updated based on the rate-distortion (RD) cost distribution, video
content, and quantization parameters (QPs). Experimental results
show that the proposed method can reduce the complexity by
about 56.76% and 55.61% on average for various sequences and
configurations; meanwhile, the RD degradation is negligible.

Index Terms—Coding unit (CU), high-efficiency video coding
(HEVC), low complexity, power efficient, spatial correlation.
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I. INTRODUCTION

W ITH THE development of multimedia technologies
and pervasive computing technologies, the past few

decades have witnessed a great success of the development of
various mobile devices and applications, which significantly
facilitates people’s life and industrial manufacturing. As mobile
devices, such as smart phones, personal digital assistant (PDA),
and tablet, getting more and more popular, it booms broad-
band mobile Internet access, e.g., 3G and 4G, and thus arises
the demand for mobile video applications, such as mobile
video communications, remote monitoring, visual sensor net-
work, surveillance, screen sharing, recording, editing, mobile
3-D, and mobile TV. Owning to an increasing demand for
high visual quality, high definition (HD) and ultra HD (UHD)
videos become popular and are inevitable new trends of con-
sumer and industrial video applications since they can provide
more realistic visual enjoyment and more accurate representa-
tion beyond human eyes. However, the HD/UHD video data
volume increases dramatically as the increase of video resolu-
tion (up to 4k × 2k, 8k × 4k) and frame rate (e.g., 60 fps and
up to 600 fps for industrial high-speed video), which requires
a powerful encoder to compress them much more efficiently in
order to reduce the service charge, data traffic, and meanwhile
enhance the service quality.

Besides the coding efficiency, video error resilience as well
as coding complexity shall also be considered in encoder design
[1], [2]. In the mobile video and related industrial applications,
network latency, capabilities, and bandwidth are not stable
and usually fluctuate due to various environments, capacity of
devices, and heterogeneous network conditions [3], [4], etc.
Moreover, the wireless network for video transmission is an
error prone channel where the packet loss as well as bit error
may easily occur. These error data not only degrade the image
quality of the error/lost frame but also bring about distortions to
successive frames due to INTER prediction and motion com-
pensation, which is called error propagation. However, these
transmission error cannot be recovered by retransmissions or
nondeterministic back-offs due to real-time requirements. To
enhance the video quality and prevent the error propagation,
INTRA or refresh INTRA frames, which do not reference to
other previous coded frames, are added while encoding. On
the other hand, the INTRA frames are random access points
that allow a decoder to start decoding properly at the loca-
tion of INTRA frames, which is useful in video skimming.
Another advantage of using INTRA frame is that it has much
lower complexity than using the INTER frames, i.e., P and
B frames, which is very important to machine vision and
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industrial high speed video that up to 600 fps. This property
is essential to mobile/portable devices with limited resources,
such as computing capabilities, memory, and battery.

An high-efficiency video coding (HEVC)/H.265 [5] has been
standardized as the latest video coding standard, which dou-
bles the compression efficiency of H.264/MPEG-4 AVC high
profile [6], i.e., half the transmission bit rate or storage space
while maintaining the same video quality. While improving
the compression efficiency of INTRA frames, many new cod-
ing technologies have been adopted, including sophisticated
INTRA prediction modes (up to 35 modes in HEVC), multi-
mode transform, and hierarchical coding block structure [5].
However, they significantly increase the computational com-
plexity and memory access of the encoder, which consumes
more computing time, power, and battery of the mobile devices.
Meanwhile, larger resolution and higher frame rate of HD/UHD
video further increase the data volume for compressing, which
makes power efficient video coding more challenging and desir-
able. In a word, a low power and high efficiency INTRA coding
is essentially important and highly desired to mobile videos
and industrial video applications, such as remote monitoring,
surveillance, remote control, machine vision, and industrial
video camera with high-speed imaging.

II. RELATED WORKS

With the development of video coding technologies, dozens
of mode candidates are included in order to adapt to diverse
video contents and maximize the coding efficiency [5], [6]. The
optimal mode among the candidates will be selected to achieve
the best performance. Mathematically, the optimal mode m*
among the candidate set M is obtained by minimizing the
Lagrangian cost J , which is presented as

⎧⎨
⎩
m∗ = argmin

m∈M
J (m)

J (m) = D (m) + λR (m)
(1)

where D(m) is the distortion between the original block and
the reconstructed block while using coding mode m, R(m) is
encoding bits with m, and λ is the Lagrange multiplier. In fact,
the determination of the modes is a decision problem, which is
common and prevalent in coding technologies, including block
partitioning, INTRA and INTER prediction, reference frame
selection, transform, filtering, and motion estimation. In the
original test model, the encoder tries all candidates in M and
calculates the cost of each mode, i.e., J(m), then, the mode
m who generates the minimum cost is selected as the opti-
mal. This “try all and select the best” strategy is able to find
the optimal but is time-consuming since all candidates shall be
checked.

By analyzing the developing trend of the standards from
MPEG-1, MPEG-2, H.264/AVC to HEVC, more and more
refined mode candidates or parameters have been adopted in
encoding modules. For example, the number of INTRA predic-
tion mode is 0 in MPEG-1/2 and 9 in H.264/AVC [6], and it
increases to 35 in HEVC [5]. The number of block type is 1 in
MPEG-1 and 7 in H.264/AVC [6]. In HEVC, there are 85 leaf

nodes in the quad-tree of the coding unit (CU) size decision
[5], [7], which means the encoder shall calculate J(m) 85 times
as finding the optimal CU depth. Moreover, there are 11 predic-
tion unit (PU) modes in each CU, including nine INTER modes
and two INTRA modes. Then, the transform module tries three
transform unit (TU) sizes (32× 32, 16× 16, and 8× 8) in
each PU. There are three recursive loops in the mode decision
in the HEVC encoder, i.e., CU, PU, and TU. The number of
mode candidates increases significantly compared to the previ-
ous standards. Thus, the complexity, memory access, and power
cost increase dramatically.

Many researchers have devoted their efforts on reducing the
HEVC encoding complexity [2], [7]–[14]. To determine the
optimal CU partition more efficiently, the CU depth range was
predicted from those of spatial neighboring CUs and temporal
colocated CU [7]. Then, the motion characteristic and rate-
distortion (RD) cost of the temporal corresponding block were
used to refine the CU depth prediction. Lei et al. [2] exploited
inter-view [1] and intercomponent correlations in fast CU size
decision for HEVC-based 3-D depth map coding. As the CU
decision can be modeled as classification problems, learning
algorithms [8]–[14] were investigated and applied to the low
complexity HEVC optimization. Xiong et al. [8] determined
the optimal CU based on unsupervised K-nearest clustering via
pyramid motion divergence. Peixoto et al. [9] proposed a fast
CU depth decision in transcoding from H.264/AVC to HEVC,
where linear discriminant functions (LDFs) were applied and
bit stream was extracted as additional features. In [10], Shen
and Yu modeled the quad-tree CU depth decision as several
binary classifications and early terminated the CU decision pro-
cess with weighted support vector machine (SVM). Besides,
Bayesian decision rules [11], Markov random field [12] and
decision tree [13] models were also used in HEVC CU size
decision. Zhang et al. [14] proposed a machine learning-based
fast CU depth decision framework, which included hierarchi-
cal decision structures, three-output joint SVM classifier, and
the optimal learning parameter determination to minimize the
coding complexity with given RD cost constraints. They basi-
cally belong to CU early termination algorithms for fast HEVC
INTER coding.

In addition, Pan et al. [15] early determined the merge mode
based on motion and hierarchical CU correlation. Shen et al.
[16] proposed a fast INTER PU mode decision scheme by
jointly using interdepth correlation and spatiotemporal corre-
lation in terms of mode, motion vector, and the RD cost. Vanne
et al. [17] analyzed the RD-complexity impacts of HEVC
INTER prediction techniques, and skipped some of the sym-
metric motion partition (SMP) and asymmetric motion partition
(AMP) mode at PU level. Lee et al. [18] determined whether
skip PU modes by utilizing the RD cost of 2N × 2N merge
mode. These schemes were proposed for fast INTER PU mode
optimization.

Since the INTRA coding is also highly complex and has
less available information, several works [19]–[24] have been
done for fast INTRA CU decision. In [19], the INTRA CU
depth range was adapted at slice/CU level based on the CU
depth of previous coded slices/CUs. In [20], a fast INTRA CU
depth decision was proposed based on the texture homogeneity
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as well as spatial neighboring coded CUs. Wang et al. [21]
determined the CU size by jointly exploring correlations
between neighboring coding tree units (CTUs), the RD cost,
and sum of absolute difference (SAD) with Hadamard trans-
form. Then, rough mode decision (RMD) was improved in
each CU to reduce the angular mode prediction complexity.
However, the spatial correlation may fail in image boundaries
or transitional areas. Therefore, in [22], the video texture char-
acteristics and coding bits of each CU were adopted to facilitate
the CU depth decision. In addition, the CU size is highly corre-
lated with the RD cost. Cho and Kim [23] presented an early
CU splitting and pruning decision for INTRA coding. The
splitting and pruning tests were performed at each CU depth
level by using a Bayes decision rule method, whose statistical
parameters were periodically updated on the fly to cope with
varying signal characteristics. In [24], a fast joint CU and angu-
lar mode prediction was proposed for INTRA coding by using
the difference between the minimum and the second minimum
RD cost estimations from Hadamard transform. These schemes
are CU size decision for INTRA coding and still some room
for further improvement on feature exploration and the coding
optimization.

In addition to the INTRA CU size decision, some works
on PU and angular mode decision from up to 35 modes have
also been investigated in [25]–[30] for fast INTRA coding.
Lim et al. [25] proposed fast PU skip and split termination
algorithm, which includes early skip, PU skip, and PU split
termination, by considering neighboring PUs and RMD cost
differences. Zhang and Zhan [26] proposed Hadamard cost-
based progressive RMD and early RD optimized quantization
skip method to facilitate the angular INTRA prediction. Hu
and Yang [27] jointly optimized CU size and mode decision
by using transparent composite model of discrete cosine trans-
form (DCT) coefficients and outlier information of the model.
To effectively predict the optimal INTRA mode from 35 mode
candidates, the variance of the neighboring reference samples
[28], edge and sum of absolute transform difference (SATD)
information [29] were exploited to reduce the number of search-
ing candidates. In [30], edges identified by Hadamard transform
were considered in fast INTRA depth coding for 3-D video
system.

In this work, we propose an advanced INTRA CU decision
algorithm to effectively lower the computational complex-
ity of HEVC by jointly considering the spatial correlation,
video texture, and statistical RD cost properties. The novelty
of the proposed algorithm lies in the following two aspects:
1) subalgorithm spatial correlation-based CU depth decision
(SC-CUDD) jointly exploits the CU’s texture and spatial cor-
relation, in which the hit rate (HR) and complexity reduction
of 7–9 prediction strategies are analyzed in detail to obtain
the optimal one. 2) Subalgorithm statistical model-based CU
early termination (SM-CUET) is proposed by exploiting the
statistical RD properties of the CUs, in which early termina-
tion thresholds can be adaptively determined and updated based
on the RD cost distribution, video contents, and quantization
parameters (QPs). The proposed two schemes are mutually
complementary and combined to effectively reduce the coding
complexity, which can promote the HD video codec design and

Fig. 1. Quad-tree coding structure of CU partition.

the related industrial applications. This paper is organized as
follows. Motivation and upper-bound of complexity reduction
are presented in Section III. Then, fast INTRA CU depth deci-
sion algorithms consisting of SC-CUDD and SM-CUET are
presented in Section IV. Experimental results and analyses
are presented in Section V. Finally, conclusion is drawn in
Section VI.

III. MOTIVATIONS AND COMPLEXITY ANALYSIS

As shown in Fig. 1, there are 1 + 4 + 16 + 64 = 85 leaf
nodes in the quad-tree while the tree depth is from depth 0 to
depth 3. The size of red, blue, and green CUs is 32× 32, 16×
16, and 8× 8, respectively. In HEVC, only some of the nodes
in the tree will be selected as the optimal CU partition for a
given coding tree block (CTB). The color dots are in corre-
spondence with the left CTB partitions, and 2 + 7 + 4 = 13
leaf nodes are finally selected. In this example, 85 leaf nodes
are checked but only 13 of them are finally selected. The best
case, i.e., the minimum number of nodes, is only one node will
be selected, where the best CU size is 64× 64 and the best
depth is 0. The worst case, i.e., maximum number of nodes,
is 64 nodes will be selected, in which the best CU depth is 3.
It means only 1–64 nodes will be finally selected as the opti-
mal CU partition. However, we shall check and calculate the
RD cost of all 85 nodes for each CTB in the original HEVC,
which has many unnecessary operations. In other words, if we
can efficiently predict the CU depth/size, significant complex-
ity reduction can be achieved. The theoretical upper-bound of
the computational complexity reduction (CCR) ΔCmax for each
CTB can be obtained under the assumption that the CU size is
precisely predicted, which is mathematically presented as

ΔCmax = 1−
∑Nk

k=1

∑j
i=0 ni (k) · Ci

Nk

∑j
i=0 4i · Ci

(2)

where i is the depth of CU, ni(k) is the number of the nodes at
depth i selected as the optimal CU for one CTB k, suppose the
coding complexity of the nodes at depth i is same and denoted
by Ci, j is the maximum allowed CU depth, and Nk is the total
number of CTBs.

To evaluate the complexity redundancies in HEVC, we sta-
tistically analyze different video sequences coded by the HEVC
and calculate the upper-bound of their CCRs. Five different
sequences were encoded by the HEVC encoder with four QPs,
which are 22, 27, 32, and 37. 100 frames for each sequences
are encoded by HM8.0 [31] with all INTRA main (AIM) pro-
file. The rest settings follow the common test conditions (CTCs)
[32]. Fig. 2 shows the average CU depth distribution over dif-
ferent QPs for five typical test sequences, we can observe that
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Fig. 2. CU depth distribution for different sequences.

TABLE I
MAXIMUM POTENTIAL CCR ΔCmax FOR DIFFERENT QPS

AND SEQUENCES (UNIT: %)

the depth 1 dominates in the Kimono, depth 3 dominates in the
PartyScene, and some are evenly distributed. Generally, the CU
depth distributions vary with contents and correlations, which
makes CU depth prediction very challenging. Suppose that the
CU size of the video sequence is 100% precisely predicted, the
ΔCmax for different sequences are shown in Table I. We have
the following three observations.

1) The potential CCR increases as the QP increases since
more CTBs will select larger sizes as the optimal CU size.

2) The ΔCmax varies as the video content changes. Usually,
the potential CCR decreases as the texture of video
content becomes complex.

3) The average ΔCmax over different QPs and sequences is
69.94%, which indicates there are a large amount of com-
plexity redundancies in HEVC INTRA coding and they
shall be removed.

Since the original mode decision process in HEVC is “try
all and select the best” and extremely redundant, our objective
for optimizing (1) is to develop a fast mode decision algorithm
that maximizes CCR and make it approaches ΔCmax subject to
negligible RD degradation (ΔJT ), which can be presented as

max CCR, subject to J(m+)− J(m∗) < ΔJT (3)

where CCR increases as the number of searched candidates
reduces, m+ is the suboptimal or optimal mode by using a fast
decision algorithm. J(m+) satisfies J(m+) ≥ J(m∗) since
m∗ is optimal and not worse than m+.

IV. PROPOSED FAST CU DECISION BASED ON

CORRELATION ANALYSES AND STATISTICS

In this section, two algorithms, correlation analyses and sta-
tistical model-based fast CU depth decision, are presented for
INTRA coding. Then, the overall algorithm is presented.

TABLE II
ACCURACY OF PREDICTING D(Bcur) WITH D(Bup) OR

D(Bleft) (UNIT: %)

A. Spatial Correlation-Based CU Depth Decision

Since the video content is highly spatially correlated, the
CU depths of the spatial neighboring CTBs are highly corre-
lated, which could be exploited for the CU decision. Usually,
the spatial correlation decreases as the distance increases, the
CU depth range of the above and left CTBs are more corre-
lated to that of the current CTB. To analyze this correlation,
we let Bup and Bleft be the above and left CTBs, respectively;
Bcur denotes the current CTB. Operator D(X) denotes the depth
range of CTB X. We analyze the HR of using D(Bup) and
D(Bleft) to predict the D(Bcur) over different test sequences
and QPs, as shown in Table II. The experimental settings are
the same as those of the previous statistical experiments in
Section III. For example, P (D(Bcur) = D(Bup)) indicates the
prediction accuracy of predicting D(Bcur) using D(Bup). We
can observe that the prediction accuracies from Bup and Bleft

are 81.30% and 78.61% on average, respectively, for different
types of sequences and QPs. This kind of direct predictions
is not accurate enough to predict the CU depth range for cur-
rent CTB; otherwise, large RD degradation will be caused in
INTRA coding. Therefore, we need to develop new prediction
strategies to improve the prediction accuracy.

As we know from the above analyses, the direct prediction
from Bup or Bleft is not so efficient. To tackle this problem, we
jointly take the texture and spatial correlation into consideration
since the INTRA CU depth is usually texture dependent [20].
For example, if the Bcur has more similar texture with the Bup

when compared with Bleft, it is likely that D(Bcur) is similar
with D(Bup). On the other hand, if the texture of the Bcur is
smoother or more complex than the textures of Bup and Bleft, it
shall be treated differently. Motivated by the texture properties
of the video content, we divided a frame into three kinds of
regions and proposed corresponding prediction strategies. The
three regions are as follows.

1) Normal region is the Bcur whose texture complexity is
in-between those of Bup and Bleft, i.e., min(T (Bup),
T (Bleft)) ≤ T (Bcur) ≤ max(T (Bup), T (Bleft)).

2) Smooth region is the Bcur whose texture complexity is
smoother than those of Bup and Bleft, i.e., T (Bcur) <
min(T (Bup), T (Bleft)).
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TABLE III
PREDICTION STRATEGIES FOR THE CTB IN NORMAL REGION (UNIT: %)

3) Complex region is Bcur whose texture is more complex
than those of Bup and Bleft, i.e., T (Bcur) > max(T (Bup),
T (Bleft)).

The operator T(X) indicates the texture complexity of CTB
X, which is calculated by

T (X) =
∑
Iij∈X

∣∣∣∣∣∣Iij −
1

NX

∑
Iij∈X

Iij

∣∣∣∣∣∣ (4)

where NX is the number of pixels in the CTB X, and Iij is the
luminance value of the pixel at position (i, j). The three kinds of
regions will be analyzed individually and the optimal CU depth
prediction strategies will be presented correspondingly.

1) Normal Region: We have developed and analyzed seven
different CU depth prediction strategies (SN1 to SN7) for the
CTB in this normal region, as shown in Table III. The union
operator is the sum of the depth ranges of two blocks and inter-
section operator describes the common part of the two depth
ranges. SN5 to SN7 predict the current CU depth by consider-
ing the texture similarity with neighboring CUs. For example,
SN7 is D(Bcur) that is predicted from D(Bup) if the complex-
ity difference between Bcur and Bup is smaller than that of Bcur

and Bleft. In order to evaluate the performance of these strat-
egy candidates and select the best one, we implemented them
on HEVC HM model and encoded five different sequences
(Traffic, Kimono, Johnny, PartyScene, and BasketballPass) with
AIM configuration, 100 frames for each sequence. Four basis
QPs, QP ∈ 22, 27, 32, 37, were tested. Two indices, the HR
and CCR of each prediction strategy, were evaluated. Note that
the CTB in complex and smooth regions is not optimized and
counted in HR/CCR statistics. In addition, the HR indicates the
ratio of correctly predicted CUs to total number of CUs in the
normal region. The third and fourth columns of Table III show
the average HR and CCR over different sequences and QPs. It
is observed that the average HR varies from 67.54% to 94.20%
for different strategies, and the average CCR is from 10.20%
to 19.43%. The SN2 is with the highest HR, which is up to
94.20%, and it is about 12%–15% higher than those of SN3
and SN4.

Fig. 3 shows the detailed HR, CCR for different sequences.
In the figure, each symbol indicates a strategy and each point
indicates the performances of a sequence. We can find that SN2
is the best one in terms of the HR, even the lowest one (Kimono)

Fig. 3. HR and CCR for normal region.

TABLE IV
PREDICTION STRATEGIES FOR CTB IN COMPLEX AND

SMOOTH REGIONS (UNIT: %)

is higher than 85%. Though the CCR achieved by SN2 is rela-
tively lower than others, we still adopt it as the optimal one by
giving higher priority to the RD performance (i.e., HR).

2) Complex and Smooth Regions: For the complex and
smooth regions, we developed nine strategies for the CTB depth
range prediction, as shown in the first column in Table IV. The
first column shows the nine different prediction strategies for
the D(Bcur), where a0 and a1 are the minimum and maximum
CU depth of D(Bup) and D(Bleft), a0 ≤ a1. These prediction
strategies are shortened as SC1 to SC9 for complex region and
SS1 to SS9 for smooth region. For example, the strategy SC5 is
[ a0, a1], which means the predicted depth range is from a0 to
a1 for the complex regions. SC4 is [ a0, max(a1 − 1, 0)] which
indicates predicted depth range that is from a0 to a1 − 1. Since
a0 ± 1 and a1 ± 1 might be out of the valid depth range [0,3],
max() and min() are operators that clipped them to [0,3]. The
rest strategies SCn for the complex region and strategies SSn,
n ∈[1,9], for the smooth region can be interpreted similarly.
Similar to the process and settings of evaluating the predic-
tion strategies in the normal region, we analyzed the prediction
strategies SCn and SSn in terms of HR and CCR. As shown
in Table IV, SC3 and SS3 are with the highest HR, which are
99.50% and 99.82%; however, these strategies are lowest in
CCR. Fig. 4 shows HR and CCR for different sequences, where
Fig. 4(a) and (b) is for complex and smooth regions, respec-
tively. Basically, with respect to the average HR, SC2, SC3,
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Fig. 4. HR and CCR for complex and smooth regions. (a) Complex region.
(b) Smooth region.

SC5, and SC6 are also good for the complex region; SS2, SS3,
SS5, and SS6 are good for smooth region. For the complex
regions, the current CTB has higher probability of selecting
smaller CU (larger CU depth) as its best CU comparing to
its neighboring Bup and Bleft CUs. Therefore, we shall further
check a higher CU depth level, i.e., a1 + 1. For the smooth
regions, the current CTB is likely to select larger CU (smaller
CU depth). Thus, we shall further check a lower CU depth level,
i.e., a0 − 1. In addition, SC6 and SS2 are both higher than
91.5% even with the worst case (Kimono). Therefore, to have
a better tradeoff between the HR and CCR, we selected SC6
and SS2 as the optimal strategies for the complex and smooth
regions in this paper, respectively.

Based on the above analyses, we derive the optimal CU size
prediction strategy based on the spatial correlation and video
texture as

D (Bcur)

=

⎧⎪⎨
⎪⎩
[max(0, a0 − 1), a1], T (Bcur) <min(T (Bup), T (Bleft))

[a0, a1] , otherwise

[a0,min(3, a1 + 1)] , T (Bcur) >max(T (Bup), T (Bleft)).

(5)

Note that for the cases that one of the above and left neigh-
boring CTBs is unavailable, i.e., the CU locates at the image
boundary, full range [0, 3] is used in order to maintain the RD
performance.

To evaluate the overall HR of the proposed spatial
correlation-based CU depth prediction, we implemented the
proposed algorithm on HM8.0, which encoded 10 test
sequences with various resolutions and characteristics. Also,
two sets of QPs, {22,27,32,37} and {24,28,32,36}, are tested
in the coding. Table V shows the HR of four different kinds of
regions, which are called boundary CTBs, smooth, normal, and
complex CTBs. Pi, i ∈[1,4], is the probability of the four kinds
of regions in each sequence. HRi, i ∈[1,4], is the HR for the
four kinds of regions. The overall HR of a sequence (HRALL) is
calculated as

HRALL =

4∑
i=1

HRi · Pi (6)

The HR of boundary CTBs is 100% accuracy since the full
range [0,3] is adopted. The boundary CTB averagely occu-
pies 17.38% of a frame. For the CTBs in other three kinds of
regions, the average percentages Pi are 23.42%, 34.19%, and
25.37%, respectively. Correspondingly, the average HR of each
region HRi is 100%, 98.71%, 93.45%, and 95.05%, respec-
tively. According to (6), we can get the overall HR is from
90.71% to 100%, and 96.00% on average, which is accurate
enough for the depth range prediction.

The above analyses are mainly for the depth range prediction
for a CTB. Actually, the depth prediction process is recursively
applied at other CU levels other than largest CU (LCU). Take
the CTB partition in Fig. 1 as an example, the up CU (red) and
left CU (blue and green) are with 32× 32, and their D(Bup) and
D(Bleft) are {1} and {2,3}, it can be used to predict the depth
of bottom-right 32× 32 CU. Furthermore, in the bottom left
32× 32 CU and the up blue CU is with 16× 16, and the left
green CU is with 8× 8, and their D(Bup) and D(Bleft) are {2}
and {3}, which can be used to predict the depth of bottom-right
16× 16. This process can be recursively applied until the CU
size is 8× 8.

B. Statistical Model-Based CU Early Termination

The SC-CUDD approach is efficient for most regions.
However, the image boundary and transitional regions between
texture and smooth areas may make that approach fail due to
lack of reference information and low correlation. To tackle this
problem and further reduce the coding complexity, we propose
the SM-CUET scheme.

In HEVC, the CU size varies from the LCU with 64× 64
to the smallest CU (SCU) with 8× 8. For the SCU INTRA
prediction, it will further choose 2N × 2N or N ×N as its
best PU size. In other words, SCU can be further split into
four sub 4× 4 blocks. Thus, we model the CU depth decision
process with four level of decisions, as shown in Fig. 5. Each
level of decision needs to determine whether to split or non-
split. For example, it first checks 64× 64 and gets its RD cost.
Then, it needs to determine whether shall further split the CU
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TABLE V
PROPORTION AND HR OF THE PROPOSED SC-CUDD ALGORITHM

Fig. 5. Structure of four level CU decisions.

or not. If it is predicted as the best CU depth, the CU is not
necessary to be split further and this CTB decision process is
terminated. Otherwise, the CU shall be further split into four
32× 32 subCUs and checked. For each of the four subCUs
with 32× 32, it goes to decision level 1. We will get the RD
cost for each of them, and then determine whether they shall be
split or not. Recursively, it ends when goes to block size with
4× 4. Therefore, we have four level of decisions and we need
to decide whether to spit a CU into four subCUs or not in each
level of CU decision.

In the HEVC INTRA coding, the large size CUs are usually
used in the smooth area while the small size CUs are used in
the texture area. Thus, when we use large size CU to encode
the smooth area, its RD cost usually will be smaller than that
of using small size CU. In other words, if the RD cost of using
large size CU is small, it is of high probability to be the best CU
size. To use this property and verify our assumption, we statis-
tically analyze the average RD cost of each depth (depth 0 to
depth 3) and their probability density function (PDF). Fig. 6
shows the PDF of the four decision levels for the sequence
Traffic. As shown in Fig. 6(a), the x-axis is the average RD cost
at pixel level for depth 3, i.e., RD cost divided by CU size of
depth 3 (8× 8), and y-axis is the percentage of CUs. The black
curve with rectangle fall(x) is the PDF for all 8× 8 blocks, the
red curve fns(x) is the PDF for nonsplit 8× 8 blocks, and the
blue curve fs(x) is the 8× 8 block that shall be further split into
4× 4. We can find that CUs in depth 3 have higher probability
to be nonsplit mode when it has low RD cost, where fns(x) is
much larger than fall(x) when x is small. Second, fall(x) is the
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Fig. 6. PDF for four CU decision levels (Traffic sequence). (a) PDF of depth
3 (decision level 3). (b) PDF of depth 2 (decision level 2). (c) PDF of depth 1
(decision level 1). (d) PDF of depth 0 (decision level 0).

sum of fs(x) and fns(x). Similar observations can be found for
Fig. 6(b)–(d). For smaller CU depth, e.g., 0, the fs(x) is usually
larger than fns(x) because most CUs shall be split and select
smaller size as the optimal CU size. These PDFs satisfy

⎧⎨
⎩
fs (x|di) = fall (x|di)− fns (x|di)∫ +∞
0

fall (x|di) dx = 100%
(7)

where di is the depth level i, i ∈ 0, 1, 2, 3. On the other hand,
the percentages of nonsplit or split CUs are the cumulative
density function (CDF) of fns(x) and fs(x), which are

⎧⎨
⎩
Pns (di) =

∫ +∞
0

fns (x|di)dx
Ps (di) =

∫ +∞
0

fs (x|di)dx.
(8)

Therefore, we define an RD cost threshold T (di) for fs(x)
and fns(x). If the average RD cost of depth di is smaller
than a preset threshold T (di), the current CU can be deter-
mined as nonsplit and it is not necessary to be further split.
Certainly, misclassification of spilt to nonsplit mode will be



ZHANG et al.: LOW COMPLEXITY HEVC INTRA CODING FOR HIGH-QUALITY MOBILE VIDEO COMMUNICATION 1499

caused by using this threshold-based approach. The percentage
of misclassified CUs Pmis(T (di)|di) and additional RD cost
ΔJmis (T (di) |di) can be calculated as

Pmis (T (di)|di) =
∫ T (di)

0

fs (x|di)dx

ΔJmis (T (di)|di) =
∫ T (di)

0

fs (x|di) (x− x0) dx

≤
∫ T (di)

0

fs (x|di)xdx (9)

where x0 is a positive RD cost of the CUs encoded with split
mode. Meanwhile, the complexity reduction can be achieved as
a number of CUs do not need to be further split. The percentage
of the early terminated CUs can be calculated as

PET (T (di)|di) =
∫ T (di)

0

fns (x|di) + fs (x|di)dx

=

∫ T (di)

0

fall (x|di) dx. (10)

The CCR is direct proportional to the value of PET(T (di)|di),
and this PET(T (di)|di) increases as T (di) increases according
to (10). In HEVC low complexity optimization, our target is to
maximize the CCR subject to acceptable RD cost increase, e.g.,
ΔJT . Therefore, the optimization target is

T ∗ (di) = maxPET (T (di)|di)
s.t. ΔJmis (T (di)|di) ≤ ΔJT . (11)

Since the RD cost increase ΔJmis (T (di) |di) is a mono-
tonically increasing function of T (di), the optimal T ∗(di) can
be achieved when ΔJmis (T

∗ (di) |di) is ΔJT , which can be
presented as

T ∗ (di) = ΔJmis
−1 (ΔJT ) |di . (12)

Now, the optimization problem of getting the optimal T ∗(di)
is changed to be a prediction of ΔJmis (T

∗ (di) |di), which has
been presented in (9).

According to Fig. 6(a)–(d), we can observe that fall(x) and
fns(x) for each depth generally obey the log-normal distribu-
tion. Therefore, fall(x) and fns(x) can be presented as

fφ (x|di) = 1

xσφ (di)
√
2π

e

(
− (ln x−μφ(di))

2

2σ2
φ(di)

)
, φ ∈ {all,ns}

(13)

where di is the depth level, i ∈ 0, 1, 2, 3, μφ(di) and
σφ(di) are the mean and standard derivation of the log-normal
model of CU RD cost at each di. In this paper, the μφ(di)
and σφ(di) are predicted from previous encoded frames with
σφ(di) = (lnE(X2)− 2lnE(X))1/2, μφ (di) = 2lnE (X)−
1/2lnE

(
X2

)
, E() is the mathematical expectation. Therefore,

if given an acceptable RD cost increase ΔJT , the optimal
T ∗(di) can be determined by applying (13), (9) to (12).

To verify the effectiveness and accuracy of the proposed
model, we have tested and encoded various sequences with

Fig. 7. Real and predictive RD cost increases for different decision levels
(QP is 22).

Fig. 8. Real and predictive RD cost increases for different QPs.

TABLE VI
R2 BETWEEN THE PREDICTED AND REAL DATA FOR DIFFERENT QPS

AND DECISION LEVELS

four different QPs. Fig. 7 shows the predicted and real RD
cost increase, where the x-axis is the threshold T (di) and
y-axis is the normalized RD cost increase divided by CU size,
i.e., ΔJmis. The legend with “Real_” prefix is the real data
collected from the encoding process, the curves labeled with
“Predicted_” are the predictive data from our model. We find
that the real and predicted RD cost monotonically increases as
the threshold T (di) increases. Another observation is that the
predicted data curves are almost overlapped with the real data
curves for the four decision levels (from 64× 64 to 8× 8).
Fig. 8 shows the RD cost for different QPs at decision level
0, i.e., determining whether split or nonsplit for CU 64× 64.
1) The maximum RD cost increases as QP increases. 2) The
predicted data are also very close to the real data for differ-
ent QPs. To verify the prediction accuracy more precisely, the
squared correlation coefficient (R2) between the predicted and
the real data for different QPs and decision levels is calculated
and presented in Table VI. R2 ranges from 0 to 1. The two
data are identically the same if the R2 equals to 1 and they
are not correlated if R2 value is 0. We observe that the R2

value is range from 0.9580 to 0.9981, which are 0.9851 and
0.9855 on average for Traffic and Kimono sequences, respec-
tively. It means that the real data and predicted data are highly
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Fig. 9. Flowchart of the proposed overall CU depth decision algorithm.

correlated, and the prediction accuracy of the statistical model
is sufficiently high.

To get the optimal T (di), we shall decide the RD cost con-
straint ΔJT first. However, the RD cost ΔJT is not so under-
standable to users. Therefore, we try to map it to the allowable
peak signal-to-noise ratio (PSNR) degradation, i.e., ΔPSNR,
for better understandability and convenience. Basically, the RD
cost ΔJT consists of distortion ΔDT and bit rate, thus its value
is larger than the distortion ΔDT , which is

ΔJT ≥ ΔDT = 2552 · 10−PSNRr
10 ·

(
1− 10

ΔPSNR
10

)
(14)

where PSNRr is the PSNR of the current frame, and ΔPSNR
is the target allowable PSNR degradation set by user. Since the
PSNRr is not available before coding, we predict it from the
average value of previous coded frames in this work. Since
the RD cost is larger than the distortion, i.e., ΔJT ≥ ΔDT ,
if we use the ΔDT to predict the optimal T (di) (the predic-
tive T (di) is denoted as T ∗

N (di)), this T ∗
N (di) is a little bit

smaller than the real optimal T (di) obtained from ΔJT , i.e.,
T ∗
N (di) = ΔJ−1

mis (ΔDT ) |di ≤ ΔJ−1
mis (ΔJT ) |di = T ∗ (di). It

means the given ΔPSNR is the upper-bound of PSNR degra-
dation for the fast algorithm. When given a ΔPSNR, the real
PSNR degradation of the proposed algorithm will be no larger
than the preset ΔPSNR.

C. Proposed Overall CU Depth Decision Algorithm

Fig. 9 shows the flowchart of the proposed CU depth decision
algorithm. It consists of two major parts, where part 1 is the SC-
CUDD and part 2 is the SM-CUET. These two subalgorithms

can be applied jointly. In the part 1 of the flowchart, D(CTB)
is the depth range of the current CTB, which is predicted from
the spatial neighboring CTBs and stored when checking LCU.
The rest of the part 1 is the implementation of (5). Note that
the D(Bcur) is updated for every CU. If CU depth is within the
D(Bcur), the part 2 is activated for further reduce the CU depth
searching. For each CU, the current CU size will be checked
first. Then, based on its RD cost and the adaptive threshold
T (di), the CU is further split into four subCUs if necessary
and CU depth plus 1 for further checking. Otherwise, the cur-
rent CU is pruned and goes to encode next CU. Note that for
the first frame, threshold T (di) is initially set as 0 and then it
will be adaptively determined based on the statistical model and
different decision levels.

V. EXPERIMENTAL RESULTS AND ANALYSES

To evaluate the performance of the proposed algorithms, we
implemented them, i.e., SC-CUDD, SM-CUET, and the over-
all algorithm, on the HEVC reference software HM8.0 [31].
Two kinds of standard test configurations, which are AIM and
all INTRA main 10 (AIM10) profiles, were used in the cod-
ing experiments. The sizes of LCU and SCU are 64× 64 and
8× 8, respectively, which means the maximum CU depth is
4. The CTCs and settings in [32] were used. Twenty differ-
ent test sequences, which are from Class A to Class E [32],
and 100 frames each were encoded with four QPs, which
are 22, 27, 32, and 37. For fair comparison, two benchmark
schemes, Li’s scheme [19] and Cho’s scheme [23] (denoted by
ChoCSVT), were implemented on HM8.0 and tested following
the CTCs. Note that parameter α selects 0.1 for Cho’s scheme
and the CU depth range decision algorithm in Li’s scheme was
implemented for comparison. All the video coding experiments
were performed on computer with CPU AMD Athlon IIX2
B24, 2.99 GHz, 2 GB memory, Windows XP operating sys-
tem. Bjonteggard delta peak-signal-to-noise ratio (BDPSNR)
and Bjonteggard delta bit rate (BDBR) [33] were used to eval-
uate the RD performance of the test schemes while compared
with the original HM. Additionally, time saving (ΔT ) was used
to measure the CCR of the tested schemes, which is defined as

ΔT =
1

4

∑4

i=1

THM (QPi)− Tψ (QPi)
THM (QPi)

· 100% (15)

where THM(QPi) and TΨ(QPi) are the encoding time of using
the original HM and scheme Ψ with QPi, Ψ ∈{Li, ChoCSVT,
SC-CUDD, SM-CUET, overall}.

Table VII shows BDBR, BDPSNR, and time saving under
different allowable RD degradation when compared with
the original HM. The preset ΔPSNR varies from −0.02
to −0.20 dB with −0.02 dB step each. Five different
sequences from Class A to Class E (Traffic, Kimono, BQMall,
BasketballPass, and Johnny) were encoded with AIM encoding
configuration. We observe that as the allowable RD degradation
increases, the BDBR increases and the BDPSNR decreases for
the test sequences. In terms of the average value over differ-
ent sequences, the BDBR changes from 0.07% to 2.70% and
the BDPSNR changes from 0.00 to −0.13 dB as the allowable
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TABLE VII
BDBR, BDPSNR, AND TIME SAVING UNDER DIFFERENT ALLOWABLE RD DEGRADATION VALUES

Fig. 10. Frame-by-frame PSNR and bits comparisons (BQMall). (a) PSNR.
(b) Bits.

ΔPSNR is set from −0.02 to −0.20 dB, i.e., the RD degrada-
tion slightly increases as the target ΔPSNR increases. Second,
the CCR (i.e., ΔT ) of the encoder increases significantly as the
ΔPSNR increases for all the test sequences. The average ΔT
varies from 20.04% to 52.18%. Third, the RD performance of

Fig. 11. Relation between BDPSNR and CCR for SM-CUET.

all the test sequence is well controlled and not larger than the
preset ΔPSNR.

In addition, Fig. 10 shows frame-by-frame PSNR and bit
comparisons among the original HM and SM-CUET with three
different ΔPSNRs, which are −0.02, −0.08, and − 0.16 dB.
We can observe that the bits of the four compared schemes are
very close to each other along the time. Besides, the PSNR
generally decreases more as the ΔPSNRs become larger when
compared with HM8.0, which conforms to the proposed statis-
tical model. Meanwhile, the frame-by-frame PSNR difference
gap is basically consistent along the time, which indicates that
the proposed SM-CUET is stable along the time. Similar results
can be found for other test sequences. Fig. 11 shows the rela-
tion between BDPSNR and CCR for SM-CUET for different
sequences. The red curve with star symbol is the average value
over the five videos. Basically, ΔT exponentially decreases as
BDPSNR approaches to 0 and ΔT varies with video content
properties. Usually, ΔT is relatively small for texture video and
large for smooth video at the same BDPSNR cost. On the other
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TABLE VIII
CODING PERFORMANCE COMPARISONS WITH AIM10 CONFIGURATION

TABLE IX
CODING PERFORMANCE COMPARISONS WITH AIM CONFIGURATION

hand, the SM-CUET is a flexible CU early termination scheme,
which provides different time saving ratios according to the
RD performance requirement. For example, it can give higher
priority to complexity reduction for mobile video communi-
cation system when there is limitation of computation power.
Also, we can give higher priority to compression efficiency for
Internet-based video-on-demand applications, since the video
quality under constraint bits is more essential to end users. This
flexible property is important for video systems with different
applications and requirements.

Besides, we also evaluate the performances of SC-CUDD
and the overall algorithm. Tables VIII and IX show the coding
performance comparisons with AIM10 and AIM configura-
tions, respectively, when compared with HM. Li’s scheme
[19] and Cho’s scheme [23] were also implemented and com-
pared. We divide the test sequences into two sets. One is
consisted of six sequences, including Traffic, Kimono, BQMall,
PartyScene, BasketballPass, and Johnny, which have been used
in evaluating the performance of subalgorithms SC-CUDD and
SM-CUET. The other is the rest standard test sequences. The
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coding performances of the proposed algorithms, including SC-
CUDD, SM-CUET, and the overall algorithm, are similar while
encoding the video Set 1 and Set 2, which indicates that the
proposed algorithms are robust.

In addition, we observe that Li’s scheme reduces the com-
plexity by 19.03% and 18.68% on an average for AIM10 and
AIM configurations, respectively, compared with the original
HM. Meanwhile, the average BDPSNR is −0.02 dB and the
average BDBR is around 0.40%. For Cho’s scheme, it can
reduce the complexity by 44.21% and 44.03% on an average for
the two configurations, respectively. Meanwhile, the BDPSNR
is −0.08 dB and the BDBR is around 1.75%. For the SC-
CUDD with AIM10 configuration, it reduces complexity by
40.16% on an average. The BDBR and BDPSNR are 0.56%
and −0.03 dB, respectively, which is comparable to the origi-
nal HM. We compare SC-CUDD with Li’s scheme since they
are, both methods, for depth range determination, and we can
find that it achieves more CCR, which is 40.16%− 19.03% =
21.13% on average. For SM-CUET, the CCR and RD perfor-
mance of SM-CUET algorithm can be changed according to
the requirements of the applications. In this work, we give a
strict condition for ΔPSNR, which is −0.08 dB, for negligi-
ble RD degradation. We observe that the CCR is 30.10% on
average and the BDPSNR is −0.02 dB on average. When com-
bined the SC-CUDD and SM-CUET together, the BDBR and
BDPSNR of the proposed overall algorithm are 1.38% and
−0.07 dB, respectively, on average, which is better than Cho’s
scheme but a little worse than Li’s scheme. However, in terms
of the CCR, it achieves 43.91%–78.18%, which is 56.76% on
average. In terms of the RD and CCR, the overall algorithm
is almost the sum of SC-CUDD and SM-CUET, which indi-
cates that the two algorithms are mutually complementary. The
CCR achieved by the overall algorithm is 56.76%− 19.03% =
37.73% and 56.76%− 44.21% = 12.55% more than those of
Li’s and Cho’s schemes. Similar results can also be found for
the AIM configuration.

Since the SM-CUET is a flexible fast CU decision algo-
rithm, the overall algorithm consisting of SM-CUET and
SC-CUDD has inherited this flexibility and can also have a
tradeoff between complexity and RD degradation. According
to the intensive experiments and comparisons, the overall algo-
rithm is efficient and achieves significant CCR while the RD
degradation is negligible.

VI. CONCLUSION

In this paper, we propose a novel fast CU decision algorithm
composed of two subalgorithms, including SC-CUDD and
SM-CUET, to reduce the complexity of INTRA coding for
mobile and industrial video applications.

1) We analyze the spatial CU depth correlation in INTRA
coding, and present SC-CUDD to predict the most proba-
ble depth range for CUs based on the spatial correlation.

2) We present a statistical model and the SM-CUET algo-
rithm, in which early termination threshold will be adap-
tively determined and updated based on the RD cost
distribution, video content, and coding parameters.

Extensive experiments demonstrate that the proposed over-
all algorithm can reduce the coding complexity by 56.76% and
55.61% on an average under AIM10 and AIM configurations,
respectively, which is efficient and outperforms the state-of-the-
art benchmark schemes. In future, we would like to investigate
learning-based approach which includes more features and
sophisticated learning algorithm to make decisions better.
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