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Abstract. Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance
information, in which color information is not sufficiently considered. Actually, color is part of the important factors
that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line
with human visual perception. We propose an SIQA method based on learning binocular manifold color visual
properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold
regularization by considering color information, which not only allows parts-based manifold representation of
an image, but also manifests localized color visual properties. In the quality estimation phase, visually important
regions are selected by considering different human visual attention, and feature vectors are extracted by using
the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature
energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained
by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D
IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective
evaluations than the state-of-the-art SIQA methods. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.6.061611]
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1 Introduction
Owing to a boom in three-dimensional (3-D) imaging
technologies and related applications, perceptual quality
assessment of 3-D visual signals plays an important role
in the 3-D imaging field. Obviously, a variety of 3-D visual
distortions can be caused during 3-D visual signal creation,
processing, compression, network transmission, and display.
Consequently, 3-D visual signals may be unsatisfactory in
terms of the end-user’s 3-D quality of experience. Therefore,
a stereoscopic image as an important representation form of
3-D visual signals and its quality assessment has important
practical significance.1,2

Two-dimensional (2-D) image quality assessment (IQA)
methods have been widely studied. The most popular IQA
metrics use a mathematical statistic to describe pixel distor-
tions, such as mean squared error (MSE) and peak signal to
noise ratio (PSNR). However, these metrics are not friendly
for the human visual experience. To improve that, Wang
et al.3 proposed the structure similarity index (SSIM) to mea-
sure the structure loss of image. Sheikh and Bovik4 proposed
visual information fidelity (VIF) based on natural scene
statistics. Zhang et al.5 proposed a feature similarity index
(FSIM) by using phase congruency and the image gradient
magnitude. Compared with the traditional 2-D IQA, stereo-
scopic image quality assessment (SIQA) methods are
required to account for left-right 2-D image quality, depth
perception, and the human visual mechanism. However,
studies of SIQA remain limited due to the lack of the under-
standing of human visual perception. Generally, SIQA meth-
ods can be categorized as: (1) 2-D metric-based SIQA,6,7

(2) binocular perception-based SIQA,8–10 and (3) simulated
receptive field-based SIQA.11,12

For 2-D metrics-based SIQA methods, state-of-the-art
2-D metrics were used to estimate the quality of a stereo-
scopic image through weighting of the left and right views’
quality.13 However, it has been proven that stereoscopic
image quality cannot be expressed simply as the average
of its left and right views’ quality.14 To improve the accuracy
of SIQA, depth/disparity information should be taken into
consideration. Benoit et al.6 presented a linear combination
for disparity distortion and 2-D IQA on both views of the
stereoscopic image. You et al.7 applied different 2-D IQA
metrics on a single distorted view and integrated the disparity
information into SIQA. All of those methods were used to
study the depth information as an independent factor to per-
ceive the quality of stereoscopic images. However, it is not
effective to evaluate the depth perception quality of stereo-
scopic image since stimuli regarding perceived depth are
different from those for 2-D-IQA.

To make SIQA be consistent with human visual percep-
tion, more visual properties should be taken into considera-
tion in SIQA. Bensalma and Larabi8 proposed an SIQA
method that measures the difference of binocular energy
between the reference and distorted stereopairs, and thus
considered the potential influence of binocularity on per-
ceived 3-D image quality. Chen et al.9 addressed binocular
rivalry issues by modeling the binocular suppression behav-
iors, which produced the state-of-the-art SIQA method. Shao
et al.10 classified a stereoscopic image into noncorrespond-
ing, binocular fusion, and binocular suppression classes.
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Each region is evaluated independently by considering its
visual properties, and all effects are finally integrated into
an overall quality score. Lin and Wu15 incorporated the
binocular integration behaviors (the binocular combination
and the binocular frequency integration) into the existing
2-D-IQA models as the basis for measuring the quality of
stereoscopic 3-D images.

Recently, many simulated receptive field-based SIQA
methods have also been proposed to learn the properties
of visual perception. Zhang et al.16 applied independent sub-
space analysis to simulate simple cells and complex cells in
the primary visual cortex (V1). Chang et al.17 proposed
sparse features fidelity to simulate simple cells in V1 via in-
dependent component analysis. Guha et al.18 proposed
a sparse representation-based quality index. However, there
are only a few works about simulated receptive field-based
SIQA methods. Shao et al.11 proposed a full-reference SIQA
metric by using multiscales sparse coding to learn binocular
receptive field properties to be more in line with human
visual perception. Li et al.12 proposed an SIQA method
based on joint structure-texture sparse coding. However,
these two methods only consider the luminance information
of the stereoscopic image, and the color information is lost.
Actually, color information is one of the important factors
that affect human visual perception. In V1, the cells are sen-
sitive to color information (11%), brightness (60%), and
color-luminance (29%). To overcome the shortcoming of
these methods, we consider the color information to derive
the color visual property and use nonnegative matrix factori-
zation (NMF) with manifold regularization to simulate
parts-based sparse coding and manifold perception, so that
manifold color visual properties are achieved. In addition,
we denote parts-based manifold color feature energy
(PMCFE) as binocular combination behaviors for evaluating
the quality of stereoscopic images. Since we integrate the
binocular combination behaviors into the proposed metric,
the proposed method is applicable to both symmetric and
asymmetric distorted stereoscopic images. Note that since
the proposed method does not consider depth information of
stereoscopic images and binocular rivalry, the performance
of the proposed method for asymmetrically distorted stereo-
scopic images is slightly behind Chen’s method9 which con-
siders depth information to account for binocular rivalry.

In this paper, we propose an SIQA method by learning
binocular parts-based manifold color visual properties.
The main contributions of this paper are as follows:

1. In the training phase, a feature detector is created from
training database based on NMF with manifold regu-
larization by considering color information. The pur-
pose of the feature detector is to capture parts-based
manifold color properties of the image.

2. In the quality estimation phase, we consider the visual
importance and compare the difference of the feature
vectors to calculate the FSIM.

3. We use the estimated feature vectors to define PMCFE
to get the binocular combination.

This paper is organized as follows: the relevant back-
grounds are summarized in Sec. 2. The proposed SIQA
method is described in Sec. 3. The experimental results are
shown and discussed in Sec. 4. Finally, conclusions are made
in Sec. 5.

2 Backgrounds

2.1 Color and Stereopsis
Apart from the enrichment of the human visual experience,
more information is in a colored world than in a black-and-
white world. Some studies19,20 provided evidence that
objects in colored scenes are more easily detected and more
easily identified than are objects in black-and-white scenes.

For stereopsis, there is an evidence for stereoscopic
perception mechanisms being sensitive to chromaticity.21

Obviously, a prerequisite for successful stereopsis is correct
matching of the corresponding parts of each view. However,
a number of studies demonstrated that the chromatic differ-
ence could indeed reduce the number of false matches even
if the objects of the scenes have similar luminance.

2.2 Parts-Based Coding and Manifold Perception
The studies of the human visual perception show that
specific neurons are responsible for specific objects, and
these objects are present in the human brain as part of their
form.22,23 The NMF method24 was, therefore, proposed to
learn the parts of objects such as human faces and text docu-
ments. The aim of the NMF method is to find two nonneg-
ative matrices (the basis matrix and the encoding matrix),
and the product of these matrices is the best approximation
to the original matrix. In addition, the number of bases in
the basis matrix is equal to the number of objects that
represent the specific neurons in charge of a particular com-
ponent, and the number of bases is usually small, which
shows that NMF is sparse.

According to the visual perception phenomenon, it has
been shown that manifolds are fundamental to perception
and the visual perception of the human nervous system has
the ability to capture the nonlinear manifold structure.25

Population activity is typically described by a collection of
neural firing rates, and so can be represented by a point in an
abstract space with dimensionality equal to the number of
neurons. The firing rate of each neuron in a population
can be written as a smooth function of a small number of
variables. This implies that the population activity is con-
strained to lie on a low-dimensional manifold. There is
a great amount of information redundancy in the digital
image, which needs to be processed by the dimension reduc-
tion technology. At the same time, it is expected that the
essential structure of an image can be maintained. The mani-
fold learning is used to find the low-dimensional manifold
hidden in the high-dimensional data set through the non-
linear geometric variation, and it can reflect the intrinsic
structure of the original high-dimensional data. For IQA,
the distorted image in the manifold subspace will be in accor-
dance with the type of change and the size of the intensity by
using manifold learning.

2.3 Binocular Combination
Human binocular vision is a complex visual process. Light
images on the two retinas are combined to form a single
“cyclopean” perceptual image, in contrast to binocular
rivalry, which occurs when the two eyes have incompatible
inputs and only one eye’s stimulus is perceived. Recently,
Ding and Sperling26 proposed the gain-control theory model
for the binocular combination as
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EQ-TARGET;temp:intralink-;e001;63;752fC ¼
�

1þ EL

1þ EL þ ER

�
· IL þ

�
1þ ER

1þ EL þ ER

�
· IR; (1)

where fC is the perceived cyclopean image, EL or ER is
the sum of energy over all the frequency channels for the
left view or the right view, respectively, and IL or IR is the
image presented to the left view or right view, respectively.

The gain-control model can be used to describe the bin-
ocular combination and explains the cyclopean perception.

Based on the gain-control model, Lin and Wu15 proposed
an SIQA model which integrates the binocular integration
behaviors into the existing 2-D objective metrics for evalu-
ating the quality of stereo images. They denoted the fre-
quency-integrated metrics (FI-metrics) as follows:

EQ-TARGET;temp:intralink-;e002;63;596FI-metric ¼
X

fgLi DðVL
i ; V

L 0
I Þ þ gRi DðVR

i ; V
R 0
I Þg; (2)

whereDð·Þ represents 2-D-IQA metric, and gLi and g
R
i are the

gains of the i‘th channel for the left view and right view,
respectively.

3 Proposed Parts-Based SIQA Method by Learning
Binocular Manifold Color Visual Properties

In this paper, by considering binocular manifold color visual
properties by using NMF with manifold regularization and
binocular combination from RGB color channels, we pro-
pose an SIQA method as shown in Fig. 1. The proposed

method is divided into two phases: training and quality
estimation. We first consider color information, parts-based
coding, and manifold perception. Using NMF with manifold
regularization, the feature detector, D, is derived from the
training database. Then visually important regions (VIR)
are selected based on different human visual attention, and
left and right views’ manifold color visual features are
extracted by using the feature detector to calculate manifold
color visual FSIM and define PMCFE. Finally, the quality
score of the stereoscopic image is derived by incorporating
binocular combination by using PMCFE in the quality esti-
mation phase. Therefore, how to capture parts-based mani-
fold color visual features for different distortions and how to
simulate binocular integration behaviors are the keys to the
success of the proposed method.

3.1 Training Phase
3.1.1 Selection of the training database

To construct the training database, we randomly select nine
original natural images from the Berkeley image segmen-
tation database,27 which includes different textures and
different scenes, as shown in Fig. 2. Since the intrinsic moti-
vation of the proposed method is to measure the similarities
between the reference and distorted images based on NMF
with manifold regularization, we only use the nondistorted
images to construct the parts-based manifold color visual
feature detector, D.

Training
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NMF with manifold
regularrization

The feature
detector D

T
r ain in g

P
h ase

Selection of the
image patch

Reference
left image

Distorted
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distorted left
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Fig. 1 The framework of the proposed parts-based SIQA method by learning binocular manifold color
visual properties.
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3.1.2 Construction of the feature detector

After constructing the training database, n nonoverlapping
image patches with a size of m ×m are randomly taken
from the training images. In the implementation, each patch
is vectorized into a column vector by scanning the values in
the patch row-by-row and channel-by-channel. Since a color
image has three RGB channels, the length K of the vector is
K ¼ m ×m × 3. Thus, all the sample vectors form a sample
matrix, X ¼ ½xij� ¼ ½X1; X2; · · · ; Xn�, where each path Xj ∈
RK×1 contains K pixels.

Since X is nonnegative and NMF can learn a parts-based
representation, the NMF method can be used to decompose
the matrix X into a nonnegative feature basis matrix and
a coding matrix. Specifically, for the nonnegative matrix X,
NMF aims to find two nonnegative matrices, U ¼ ½uik� ∈
RK×r and S ¼ ½sjk� ∈ Rn×r such that

EQ-TARGET;temp:intralink-;e003;63;296X ¼ UST; (3)

where r > 0 is the number of the basis vector in the sample
matrix. In practice, we have r < K and r < n.

Thus, NMF is essentially used to find a compressed
approximation of the sample matrix. Each sample Xj can
be represented as

EQ-TARGET;temp:intralink-;e004;63;209Xj ≈
Xr

k¼1

Uksjk; (4)

where Uk is the k’th column vector of U. Thus, each sample
Xj is approximated by a linear combination of the columns
of U, weighted by the components of S. Therefore, the
matrix U can be regarded as comprising a basis that is opti-
mized for the linear approximation of the sample matrix.

Generally, in order to find two nonnegative matrices
U and S, there are two commonly used cost functions.
The first one is the square of the “Frobenius norm” of
two matrices’ difference:

EQ-TARGET;temp:intralink-;e005;326;476E1 ¼ kX − USTk2F ¼
X
i;j

�
xij −

Xr

k¼1

uiksjk

�
2

: (5)

The second one is the divergence between two matrices

EQ-TARGET;temp:intralink-;e006;326;424E2 ¼ DðXjjUSTÞ ¼
X
i;j

�
xij log

xij
yij

− xij þ yij

�
; (6)

where Y ¼ ½yij� ¼ UST . The cost function of Eq. (5) is the
square of the Euclidean distance between two matrices and
the cost function of Eq. (6) is referred to as the divergence
instead of distance between X and Y.

By using the nonnegative constraints, NMF can be used to
learn a parts-based representation of image. However, it fails
to discover the intrinsic geometrical and discriminating
structure of the original data space, which is important for
designing the IQA metric for different types and levels of
distorted images. Here, a natural assumption could be that
if two original data points Xj and Xl are close, then the cor-
responding low-dimension data points Zj and Zl are also
close to each other. Therefore, the manifold learning theory
is embedded in the NMF framework.

The low-dimensional representation of Xj with respect to
the feature basis is Zj ¼ ½sj1; · · · ; sjr�T . The weight matrix
W ¼ ½Wjl� for measuring the closeness of two points Xj
and Xl is defined as follows:

EQ-TARGET;temp:intralink-;e007;326;183Wjl ¼
�
e−

kXj−Xlk2
ε if Xl is among theknearst neighbors ofXj

0 otherwise;

(7)

where ε > 0 is a parameter. Here, we set ε ¼ 1.
Therefore, we can use the following two manifold regu-

lation terms to measure the smoothness of the low-dimen-
sional representation

Fig. 2 Selected images for the training phase of the proposed method.
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EQ-TARGET;temp:intralink-;e008;63;752

Θ2 ¼
1

2

Xn
j;l¼1

½DðZjjjZlÞ þDðZljjZjÞ�Wjl

¼ 1

2

Xn
j;l¼1

Xr

k¼1

�
sjk log

sjk
slk

þ slk log
slk
sjk

�
Wjl; (8)

and
EQ-TARGET;temp:intralink-;e009;63;667

Θ1 ¼
1

2

Xn
j;l¼1

kZj − Zlk2Wjl

¼
Xn
j¼1

ZT
j ZjDjj −

Xn
j;l¼1

ZT
j ZlWjl

¼ TrðSTDSÞ − TrðSTWSÞ ¼ TrðSTLSÞ; (9)

where Trð·Þ denotes the trace of a matrix, D is a diagonal
matrix, Djj ¼

P
Wjl, and L ¼ D −W is the graph

Laplacian matrix.
Similar to NMF, two objective functions according

Eqs. (8) and (9) for obtaining two nonnegative matrices
U and S are defined as follows:28

EQ-TARGET;temp:intralink-;e010;63;505O1 ¼ kX − USTk2 þ λTrðSTLSÞ; (10)

or
EQ-TARGET;temp:intralink-;e011;63;463

O2 ¼
X
i;j

�
xij log

xij
yij

− xij þ yij

�

þ λ

2

Xn
j;l¼1

Xr

k¼1

�
sjk log

sjk
slk

þ slk log
slk
sjk

�
Wjl: (11)

Here, Eq. (11) is used as the objective function and to min-
imize this function to obtain the following two updating
rules:

EQ-TARGET;temp:intralink-;e012;63;352uik←uik

P
jxijsjk∕

P
k
xiksjkP

j
sjk

; (12)

EQ-TARGET;temp:intralink-;e013;63;293
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�X
i
uikI þ λL

�
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2
66666666664
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P
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uiks2 k

�

..

.

snk
P
i

�
xinuik∕

P
k
uiksnk

�

3
77777777775
;

(13)

where I is an identity matrix, and Sk is the k’th column of S.
Thus, the two nonnegative matrices U and S are calcu-

lated, and the feature basis matrix U is needed.
After the above processing, each patch Ti can be repre-

sented as a linear combination of the feature basis matrix U,
i.e.,

EQ-TARGET;temp:intralink-;e014;63;99Ti ¼ UFi; (14)

where Fi is a feature vector after dimensionality reduction,
and its dimension is r. Thus, using the generalized inverse
matrix D ¼ ðUTUÞ−1UT , the feature vector can be obtained
as follows:

EQ-TARGET;temp:intralink-;e015;326;708Fi ¼ DTi; (15)

where D is the feature detector.

3.2 Feature Similarity and Quality Estimation Phase
3.2.1 Selection of reference-distorted patch pairs

It is well known that not every pixel in an image receives
the same level of visual attention. For IQA, the quality of the
image is mainly concentrated in the VIR. Here, we use the
visual saliency detector to detect the VIR in an image.

In the following section, the left and right views of a ster-
eoscopic image are processed in the same way, and the left
view is taken as an example to describe the algorithm
processing. The visual saliency detection algorithm29 is used
to obtain the saliency mapsML

r andML
d on the left view ILr of

a reference stereoscopic image and its corresponding dis-
torted left view ILd, respectively.

To obtain VIR of the left view, ILr , ILd , M
L
r , and ML

d are
segmented into nonoverlapping patches with the same
size of 8 × 8 pixels, and these patches are vectorized and
arranged in columns of the matrices XLr, XLd, SLr, and SLd,
respectively.

In this paper, to measure the difference of saliency between
the left view of the reference stereoscopic image and the
distorted stereoscopic image, the term ej is defined as

EQ-TARGET;temp:intralink-;e016;326;413ej ¼
1

N

XN
i¼1

jSLrij − SLdij j; j ¼ 1; · · · ;M; (16)

where SLrij is the element of the i’th row and the j’th column
of SLr,M is the number of the image patches, and N denotes
the number of pixels in each patch. Here, N ¼ 8 × 8 ¼ 64.

Then, sorting all of ej from large to small, e�i is obtained
as

EQ-TARGET;temp:intralink-;e017;326;305e�1 ≥ e�2 ≥ · · ·≥ e�M: (17)

Let t1 ¼ λ1 · M, where λ1 ∈ ð0;1� denotes the ratio coeffi-
cient of the selected reference-distorted patch pairs and
t1 denotes the number of selected reference-distorted
patch pairs. Thus, e�i of the former t1 corresponding to
ðYLr; YLdÞ are selected as the VIR, i.e.,

EQ-TARGET;temp:intralink-;e018;326;219ðYLr; YLdÞ ¼ fðXLr
j ; X

Lr
j Þjj ∈ labelfe�i of the former t1gg:

(18)

After the above processing, the final visually important
left reference-distorted patch pairs are selected as the VIR.
Similarity, visually important right reference-distorted patch
pairs ðYRr; YRdÞ are also selected.

3.2.2 Feature extraction

After obtaining VIR of image, the parts-based manifold color
feature vectors, aLi and b

L
i , can be extracted by using the fea-

ture detector D as follows:
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EQ-TARGET;temp:intralink-;e019;63;752aLi ¼ D × YLr
i ; (19)

and

EQ-TARGET;temp:intralink-;e020;63;719bLi ¼ D × YLd
i : (20)

Thus, the feature vectors aLi and bLi form two matrices, AL

and BL. Since the size of D is r ×m, the length of all aLi , b
L
i ,

aRi , and bRi are r, and the size of all AL, BL, AR, and BR

are r × t1.

3.2.3 Feature similarity index

In order to quantify the perceptual quality of the image, we
compare the feature vector matrices AL and BL. Therefore,
FSIM of the left distorted image among the feature vectors is
defined as

EQ-TARGET;temp:intralink-;e021;63;574ScoreLNMFM ¼ 1 −
1

r · t1

Xr

i¼1

Xt1
j¼1

ðaLij − bLijÞ2 þ C

ðaLijÞ2 þ ðbLijÞ2 þ C
; (21)

where t1 denotes the number of the retained feature vectors
in an image, and aLij and bLij denote the values of the i‘th
row and the j‘th column of UL and VL, respectively. C is
a constant to avoid the denominator being zero in this
paper, C ¼ 0.08.

In HVS, the visual response for each view of the stereo-
scopic imagewill not be the same. To simulate the visual prop-
erties from the binocular combination, we define PMCFE.

Definition 1: Given an image I, its PMCFE is defined as
the average feature energy of the VIR in image I, i.e.,

EQ-TARGET;temp:intralink-;e022;63;407PMCFEðIÞ ¼ 1

t1

Xt1
j¼1

kAjk22: (22)

According to Eq. (22), we can calculate PMCFE for each
view and define the weights for the left and right views
of stereoscopic images by, respectively,

EQ-TARGET;temp:intralink-;e023;63;323ωL ¼ PMCFEðILÞ
PMCFEðILÞ þ PMCFEðIRÞ ; (23)

and

EQ-TARGET;temp:intralink-;e024;63;267ωR ¼ PMCFEðIRÞ
PMCFEðILÞ þ PMCFEðIRÞ : (24)

According to Eqs. (23) and (24), the final FSIM of the stereo-
scopic image, i.e., SIQA score, can be derived as follows:

EQ-TARGET;temp:intralink-;e025;63;205QNMFC ¼ ωL · ScoreLNMFM þ ωR · ScoreRNMFM: (25)

4 Experimental Results and Analyses

4.1 Databases and Performance Measures

1. The LIVE 3-D phase I database30 consists of 365 sym-
metrically distorted stereoscopic images generated
from 20 reference stereoscopic images by corrupting
them with five different distortion categories: JPEG
2000 (JP2K) and the JPEG compression standards,
additive white Gaussian noise (WN), Gaussian blur

(Blur), and a fast-fading (FF) model based on the
Rayleigh fading channel.

2. The LIVE 3-D phase Π database31 consists of 120
symmetrically distorted stereoscopic images and 240
asymmetrically distorted stereoscopic images gener-
ated from eight reference stereoscopic images. It
includes the same distortion categories as phase I.

In this paper, three indices that measure the consistency
between the results of the proposed method and DMOS
are used: the Spearman rank order correlation coefficient
(SRCC) and the Pearson linear correlation coefficient
(PLCC), which measure the prediction monotonicity, and
the root mean squared error (RMSE), which measures the
prediction accuracy. A perfect match between the objective
and subjective scores will give SRCC ¼ PLCC ¼ 1 and
RMSE ¼ 0. For the nonlinear regression, the four-parameter
logistic function is defined as follows:32

EQ-TARGET;temp:intralink-;e026;326;554DMOSP ¼ β1 − β2

1þ exp
�
− x−β3

jβ4j
� þ β2; (26)

where β1, β2, β3, and β4 are the parameters of the regression
model. Note that the nonlinear regression is applied to
LIVE I and LIVE Π 3-D IQA databases independently
since LIVE I database only consists of symmetrically dis-
torted images and LIVEΠ database consists of both symmet-
rically and asymmetrically distorted stereoscopic images.

4.2 Overall Assessment Performance
Here, we compare the proposed method with some state-of-
the art SIQA metrics on the two benchmark databases in
terms of SRCC, PLCC, and RMSE. Particularly, these
metrics can be divided into two groups: (1) luminance infor-
mation plus energy response-based information (e.g., FI-
PSNR, FI-SSIM, FI-VIF, Bensalma’s method,8 and Shao’s
method11) and (2) luminance plus disparity based informa-
tion (e.g., Benoit’s method,6 You’s method,7 and Chen’s
method9). FI-PSNR, FI-SSIM, FI-VIF, and Bensalma’s
method are based on 2-D-IQA. Shao’s method uses multi-
scales sparse representation and sparse energy response.
Benoit’s method, You’s method, and Chen’s method use dis-
parity information. The performance of the three methods is
highly dependent on the stereoscopic matching algorithm.

Table 1 lists the performance evaluation results of the pro-
posed method and eight other SIQA methods on the two test
databases. The best results across the nine SIQA methods for
each database are highlighted in boldface. From Table 1, it is
found that Chen’s method and Shao’s method are reasonably
good for the two databases. A possible reason is that “cyclo-
pean” perceptual map based (Chen’s method) and sparse
representation based (Shao’s method) methods are highly
in line with human visual perception. However, these meth-
ods only consider the luminance information of the image.
Since the proposed method considers the color information
and uses the NMF with manifold regularization to learn
manifold color visual properties, the proposed method can
achieve much higher results than the other SIQA methods.
Actually, color is one of the important factors that affect
human visual perception, and parts-based representation
and manifold are fundamental to perception.
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In addition, from the table, an observation is that Chen’s
method can achieve the best results on the LIVE 3-D phaseΠ
database while the proposed method gets close to the per-
formance of Chen’s method. A possible explanation for
this situation is that Chen’s method considered binocular
rivalry and used depth information to construct perceived
cyclopean image while the proposed method only considers
binocular combination behaviors and does not use depth
information. Accounting for binocular rivalry can greatly
improve the performance of SIQA methods on asymmetric
distorted stereoscopic images. However, Chen’s method
depends highly on accurate ground truth depth values.

In order to provide a visual illustration for the perfor-
mance of the proposed method, the scatter plots of predicted
quality scores against subjective quality scores on the LIVE
3-D phase I database and the LIVE 3-D phase Π database are
shown in Fig. 3. From the figure, the proposed method’s

points are close to each other, which means the proposed
method correlates well with subjective ratings.

4.3 Performance on Individual Distortion Types
In this section, we comprehensively compare the proposed
method with the other SIQA methods on each type of dis-
tortion. PLCC and SRCC results are listed in Tables 2 and 3,
respectively, where the top three metrics have been high-
lighted in bold. From the tables, we can see that the proposed
method is among the top 14 in terms of PLCC and SRCC,
followed by Chen’s method (13 times) and Shao’s method
(11 times). In addition, the proposed method achieves perfect
results for JPEG, JP2K, and FF distortions. A possible
explanation is that the proposed method is more sensitive
to these three distortions. However, the proposed method
is noted as very prominent for WN distortion because the
localized features cannot reflect the changes of image quality

Table 1 Performance of the proposed method and the other eight methods in terms of SRCC, PLCC, and RMSE on the two databases (cases in
bold denote best performance).

FI-PSNR FI-SSIM FI-VIF Bensalma8 Benoit6 You7 Chen9 Shao11 Proposed

LIVE I SRCC 0.8599 0.8606 0.9188 0.8747 0.8901 0.9247 0.9157 0.9251 0.9310

PLCC 0.8645 0.8699 0.9222 0.8874 0.8899 0.9303 0.9167 0.9350 0.9381

RMSE 8.2424 8.0874 6.3423 7.5585 7.4786 6.0161 6.5503 5.8155 5.6789

LIVE Π SRCC 0.6375 0.6795 0.7213 0.7513 0.7475 0.7206 0.9013 0.8494 0.8879

PLCC 0.6584 0.6844 0.7234 0.7699 0.7642 0.7744 0.9065 0.8628 0.8979

RMSE 8.4956 8.2295 7.7936 7.2035 7.2806 7.1413 4.7663 5.7058 4.9680

Average SRCC 0.7487 0.7701 0.8201 0.8130 0.8188 0.8227 0.9085 0.8873 0.9095

PLCC 0.7615 0.7772 0.8228 0.8287 0.8271 0.8524 0.9116 0.8989 0.9180

RMSE 8.3690 8.1585 7.0680 7.3810 7.3796 6.5787 5.6583 5.7607 5.3235

Fig. 3 Scatter plots of predicted quality scores against the subjective scores of the proposed method on
the LIVE 3-D phase I database and the LIVE 3-D phase Π database. (a) LIVE 3-D phase I database.
(b) LIVE 3-D phase Π database.
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for this distortion. Overall, the proposed method not only
predicts the image quality consistently across different
types of distortions but also has an impressive consistency
with human perception.

4.4 Influence of the Parameter Selection
In this section, we conduct experiments on the LIVE 3-D
phase I database to explore the impact of our parameters:
the number of sample n, patch size m, r, and λ1. Without
losing generality, PLCC values are used for analyzing the
impacts of the parameters.

We first analyze the effects of different setting combina-
tions of the number of sample n and patch size m since these
two parameters affect the formation of the feature detector

D in the training phase. In our experiment, the following
parameter candidates are considered: n ∈ f13;500ð1500 × 9Þ;
18;000ð2000 × 9Þ; 22;500ð2500 × 9Þg, and m ∈ f5;6; 7;8;
9;10; 11g. Performance effects of n and m are shown in
Fig. 4. In Fig. 4, the highest value of PLCC is obtained
when n equals to 18000 and m equals to 8. From the figure,
an interesting observation is that no further increase of PLCC
is observed when the value of patch size m is continuously
increased. A possible explanation for this situation is that too
larger or too small a patch size m will reduce the image
quality of evaluation. As is clearly seen from the figure,
we set n ¼ 18;000 and m ¼ 8 in this paper.

We further analyze the sensitivity to the value of r, while
the parameter λ1 is fixed to be λ1 ¼ 0.4. First, we set 17 inte-
ger values of r from 8 to 24 with the step of 1. Figure 5 shows

Table 2 Performance comparisons of the nine methods on each individual distortion types in terms of PLCC.

Criteria FI-PSNR FI-SSIM FI-VIF Bensalma8 Benoit6 You7 Chen9 Shao11 Proposed

LIVE I JPEG 0.2866 0.2741 0.6545 0.3803 0.5766 0.6333 0.6344 0.5200 0.6547

JP2K 0.8381 0.8210 0.9421 0.8389 0.8859 0.9410 0.9164 0.9213 0.9357

WN 0.9280 0.9250 0.9310 0.9147 0.9354 0.9351 0.9436 0.9448 0.9373

Gblur 0.9475 0.9080 0.9573 0.9369 0.9217 0.9545 0.9417 0.9592 0.9633

FF 0.7086 0.7297 0.7572 0.7339 0.7477 0.8589 0.7580 0.8594 0.8756

LIVE Π JPEG 0.6124 0.5486 0.8906 0.8577 0.5328 0.6741 0.8422 0.7472 0.9038

JP2K 0.7457 0.7191 0.9164 0.6667 0.6467 0.7320 0.8426 0.7823 0.9218

WN 0.9150 0.9139 0.8981 0.9436 0.8610 0.5464 0.9602 0.9464 0.9045

Gblur 0.7083 0.7250 0.8993 0.9077 0.8814 0.9763 0.9650 0.9580 0.8974

FF 0.7025 0.7342 0.7574 0.9097 0.8472 0.8561 0.9097 0.9046 0.9183

Table 3 Performance comparisons of the nine methods on each individual distortion types in terms of SRCC.

Criteria FI-PSNR FI-SSIM FI-VIF Bensalma8 Benoit6 You7 Chen9 Shao11 Proposed

LIVE I JPEG 0.2070 0.2047 0.6002 0.3283 0.4983 0.6008 0.5582 0.4951 0.6368

JP2K 0.8388 0.8222 0.9125 0.8170 0.8730 0.9051 0.8956 0.8945 0.8920

WN 0.9284 0.9282 0.9335 0.9055 0.9369 0.9403 0.9481 0.9405 0.9393

Gblur 0.9345 0.8788 0.9329 0.9157 0.8802 0.9300 0.9261 0.9403 0.9445

FF 0.6581 0.6866 0.7497 0.6500 0.6242 0.8030 0.6879 0.7963 0.8324

LIVE Π JPEG 0.6129 0.5641 0.8768 0.8461 0.5078 0.5229 0.8396 0.7330 0.8893

JP2K 0.7193 0.7003 0.9212 0.8038 0.6325 0.7309 0.8334 0.7845 0.9027

WN 0.9073 0.9091 0.9341 0.9386 0.8569 0.4820 0.9554 0.9651 0.8861

Gblur 0.7112 0.7387 0.8868 0.8838 0.8545 0.9227 0.9096 0.9204 0.8914

FF 0.7012 0.7350 0.7586 0.8743 0.8319 0.8392 0.8890 0.8905 0.8996
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performance impact of r and λ1. Figure 5(a) shows the plot of
PLCC as a function of the parameter r. As shown in Fig. 5,
the best result is obtained on the LIVE 3-D phase I database
when r ¼ 9. Although the value of PLCC is oscillatory, the
values are stable between 0.92 and 0.93. It shows that the
proposed method can obtain good quality evaluations results
for different parameters r. Here, we set r ¼ 9.

Similarly, we analyze the inference of the parameter λ1,
while the parameter is fixed to be r ¼ 9. We set 9 values
of the parameter λ1 from 0.1 to 1 with an increment of
0.1. The performance results are shown in Fig. 5(b). The
parameter λ1 affects the number of the VIR. The whole
image will give λ1 ¼ 1. As shown in Fig. 5(b), the best
value of PLCC is obtained when λ1 ¼ 0.4. This shows that
the VIR occupy a certain proportion of the whole image.
Therefore, we set λ1 ¼ 0.4 in this paper.

4.5 Impact of Color Information
Here, we discuss the impact of color information for SIQA.
Color information used in the proposed method is composed
of RGB three channels. It is necessary to verify the impact
of color information and to test the performances when
only luminance information is used or independent channel
information is used. We denote these schemes by Pro-A
(only luminance information is used), Pro-B (only intensity

information of R-channel is used), Pro-C (only intensity
information of G-channel is used), Pro-D (only intensity
information of G-channel is used), and Pro-E (color informa-
tion of the proposed method is used). We further compare the
performances of the five schemes with different information
channels. The comparison results of all these schemes on
two databases are presented in Table 4. From the table,
we can see that the best performance is obtained when the
color information of RGB channels is jointly used and other
schemes give similar results. A possible explanation for
the comparison results is that the prediction accuracy and
the prediction monotonicity of SIQA are improved when
color information of the RGB channels is used. Certainly,
satisfactory results are also obtained when only luminance
information is used or independent channel information is
used. Overall, color information of the RGB channels is
able to improve the performance of SIQA.

5 Conclusions
In this work, we propose a parts-based SIQA method by
learning manifold color visual properties. First, color infor-
mation and parts-based manifold perception are considered.
Then, a color feature detector is learned from the training
images by using NMF with manifold regularization.
Furthermore, the VIR are selected and the local manifold

Fig. 4 Effects of different setting combinations of the number of
sample n and patch size m.

Fig. 5 Performance impact of r and λ1. (a) Results influenced by r . (b) Results influenced by λ1.

Table 4 Performance comparisons for each proposed scheme.

Pro-A Pro-B Pro-C Pro-D Pro-E

LIVE I SRCC 0.9229 0.9226 0.9186 0.9177 0.9310

PLCC 0.9263 0.9278 0.9240 0.9208 0.9381

RMSE 6.1790 6.1170 6.2698 6.3944 5.6789

LIVE Π SRCC 0.8797 0.8714 0.8640 0.8720 0.8879

PLCC 0.8887 0.8865 0.8793 0.8850 0.8979

RMSE 5.1741 5.2234 5.3766 5.2551 4.9680
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color visual feature of the selected VIR is extracted by using
the feature detector. Finally, the quality score of the stereo-
scopic image is obtained by incorporating the binocular
combination. Moreover, the experimental results of the pro-
posed method are consistent with subjective quality assess-
ment. In the future, we will extend the proposed method to
measure the quality assessment of stereoscopic video.
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