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Abstract Perceptually salient regions of stereoscopic images significantly affect visual com-
fort (VC). In this paper, we propose a new objective approach for predicting VC of stereo-
scopic images according to visual saliency. The proposed approach includes two stages. The
first stage involves the extraction of foreground saliency and depth contrast from a disparity
map to generate a depth saliency map, which in turn is combined with 2D saliency to obtain a
stereoscopic visual saliency map. The second stage involves the extraction of saliency-
weighted VC features, and feeding them into a prediction metric to produce VC scores of
the stereoscopic images. We demonstrate the effectiveness of the proposed approach compared
with the conventional prediction methods on the IVY Lab database, with performance gain
ranging from 0.016 to 0.198 in terms of correlation coefficients.

Keywords Stereoscopic image . Visual comfort prediction . Stereoscopic saliency detection .

Depth contrast . Depth saliencymap

1 Introduction

Stereoscopic three-dimensional (S3D) visualization can provide a viewer an illusion of depth
perception, and is the latest step in the evolution of image/video formats. However, when
people watch stereoscopic images on current stereoscopic displays, some normal neural
function may be disturbed by accommodation-vergence mismatches between the left and right
eyes, causing visual discomfort to observers [25]. Over the last two decades, extensive studies
have been conducted regarding the health and safety aspects of visual discomfort caused by
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unnatural stereoscopic images [12, 15, 23, 26, 36]. Several key factors resulting in visual
discomfort have been identified, including excessive horizontal disparity [15, 26], fast changes
in disparity [23], mismatches between the left and right images of stereo pairs [12], and
excessive luminance and chrominance differences between the left and right images [36].
These visual discomforts can result in eyestrain, nausea, and headache. Therefore, it is
desirable and of great importance in developing effective and automatic visual comfort (VC)
prediction models for appropriate 3D multimedia production.

Recently, biologically plausible computational schemes have been proposed to measure the VC/
visual discomfort of stereo images [5, 17–20, 25, 26, 29]. Park et al. [25] investigated the
accommodation- vergence conflict and developed the 3D accommodation-vergence mismatch
predictor. They then proposed a 3D visual discomfort predictor to predict stereoscopic visual
discomfort [26]. Sohn et al. [29] proposed two object-dependent disparity features (i.e., relative
disparity and object thickness features) to predict visual discomfort of stereoscopic images. Jung
et al. [17] used visually important regions to automatically assess visual discomfort. Choi et al. [5]
proposed the visual fatigue evaluation method that considers spatial complexity, temporal complex-
ity, and depth position. Lambooij et al. [20] assessed 3D VC according to the effect of screen
disparity offset and range. Kim et al. [19] developed a visual fatigue predictor for stereo images by
measuring excessive horizontal and vertical disparities caused by stereoscopic impairments.

However, the human visual system has a remarkable capability of selectively focusing on
visually salient areas among overwhelming information from the surrounding environment
[32, 33]. The more salient a region is, the more important it is for overall VC production.
Consequently, it is necessary to explore the stereo visual saliency for predicting stereo VC. We
therefore propose a VC prediction approach based on stereo visual saliency for stereoscopic
images. The algorithm can be partitioned into two blocks, stereo visual saliency detection and
VC prediction. Our work differs in several aspects from the prior work.

First, we use a regional contrast-based saliency extraction method to compute the
depth (disparity) saliency map, in a manner similar to that described in [22]. The
previous saliency extraction method for a disparity map involved the assignment of
disparity values close to the maximum disparity value for high depth saliency values,
while assigning disparity values close to the minimum disparity for low depth saliency
values [17]. But the closer objects are not always salient. For example, the ground floor
in an image has a wide range of disparity values but the ground is not salient. Based on
the observation that the disparity change between an object and its background tends to
be abrupt and the change in the ground tends to be smooth, we first compute the local
disparity difference along each row and use it to modulate the original disparity map.
The local disparity difference modulation can degrade ground saliency. Then, the re-
gional contrast-based saliency detection method is used to extract a salient object from
the modulated depth map.

Second, considering that the 3D visual discomfort caused by vergence-accommodation
conflict affects visual attention, we linearly combine depth and 2D saliency maps by incorpo-
rating disparity comfort. Furthermore, we extract the depth contrast from the disparity map as
an important saliency cue, because it directs the viewer’s attention in the viewing of 3D
images.

Third, in the VC prediction module, we extract not only the disparity magnitude and
disparity gradient but also luminance and chrominance differences from the stereoscopic pairs
as significant perceptual features, considering that such excessive differences can result in
binocular vision physiological abnormalities [1].
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The remainder of the paper is organized as follows. In Section 2, we address the issue
of 3D saliency for stereoscopic images. The depth saliency computation and 2D saliency
estimation are described in Section 2.1. In addition, a pooling strategy applied on the two
saliency maps is introduced in Section 2.2, followed by salient object extraction in
Section 2.3. In Section 3.1, we first show the extraction of the disparity magnitude,
disparity gradient, and luminance and chrominance differences from the stereoscopic
pairs as significant VC features, and then combine these features with stereoscopic
saliency maps. Section 3.2 shows our construction of a VC predictor for stereoscopic
images based on the extracted VC indices, with the optimized parameters, through
support vector regression. Extensive experiments and performance comparisons are
performed in Section 4. Finally, conclusions are drawn in Section 5.

2 Stereoscopic image saliency computation

Saliency detection for S3D image/video is a topic of high interest in computer vision studies, a
good survey can be found in [2]. Basically, the stereoscopic saliency shall include the 2D
texture saliency and depth saliency. Therefore, we develop a stereoscopic saliency model in
this work, as shown in Fig. 1, and it consists of three major parts: 1) computation of depth and
2D image saliencies; 2) fusion of depth and 2D saliency maps; and 3) salient object extraction.
Details of the three parts of our saliency model are presented in the following sections 2.1 to
2.3.

2.1 Depth saliency computation

Depth information in a stereoscopic image represents the distance between objects and
observers [35]. Psychological studies indicate that people’s capability to cognize and identify
objects depends heavily on effective utilization of depth information, and there are deep
relations between visual attention and depth information [7]. Therefore, depth saliency is an
important factor for stereoscopic saliency and VC prediction.

Instead of directly assigning disparity values close to the maximum (minimum) disparity
value for high (low) depth saliency values as used in most depth saliency computation
algorithms, we develop a depth saliency computation method according to depth region
contrast and depth edge as follows.

Fig. 1 The computation procedure of stereoscopic saliency model
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1) Acquire Disparity Map: In our depth saliency experiments, the disparity maps are
distinguished into two groups: those with low-quality disparity maps (e.g., Kendo and
Lovebird) are estimated using the depth-estimation reference software [30] and those with
higher quality disparity maps (Ballet and Breakdancers; the second and third columns in
Fig. 2) are obtained using a laser range camera.

2) Compute Depth Salient Object: In general, human eyes tend to focus on foreground
objects than background objects [21], indicating that the objects closer to the viewer are
more salient than those farther away. However, closer objects are not always salient. For

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2 Depth saliency map estimation. a Left-view image. b Right-view image. c Disparity map. d Preprocessed
disparity map. e Foreground saliency map. f Depth edge contrast map. g Depth saliency map
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example, in the second column of Fig. 2, although the ground floor with high disparity
values is closer to the viewer, it is not salient. By deriving inspiration from [22], we first
calculate the local disparity difference along each row, and use it to modulate the original
disparity map D as

d
0
p ¼ dp � dp−dr

��� ��� ð1Þ

where p is a pixel in the disparity map, dp
′ and dp are respectively the modulated and original

disparity values of pixel p, and dr denotes the average disparity values of the row that contains
dp. The disparity values at the ground floor are then reduced (Fig. 2d).

Next, a region contrast-based salient detection algorithm [4] is extended for depth saliency
analysis. This approach mainly consists of two steps: the first step is to segment the input
image (modulated disparity map D′) into regions by using the graph-based image-segmenta-
tion method [8]; the second step is to compute the saliency value of a region Ri by measuring
its disparity contrast with that of all the other regions in D′,

S Rið Þ ¼
X
Ri≠Rk

nkd
0
R Ri;Rkð Þ; ð2Þ

where S(Ri) is the saliency for region Ri, nk is the number of pixels in region Rk, and dR
′ (Ri, Rk)

is the disparity contrast between Ri and Rk:

d
0
R Ri;Rkð Þ ¼

X
p∈Ri;q∈Rk

ω p; qð Þ⋅d0
p; qð Þ

nink
; ð3Þ

where d′(p, q) is the disparity difference between pixels p and q, defined as |dp
′ − dq′ |, ω(p, q) is a

weight computed using the spatial distance between p and q as ω(p, q) = e− p−qk k 2
2=σ

2, where
σ2 is a control parameter with default value 0.4, and the image coordinates are normalized to
[0, 1].

Finally, according to the observation that the object popping from the screen tends to be
salient, we mapped the saliency values SR(x, y) obtained by (2) with

S
0
R x; yð Þ ¼ SR x; yð Þ−Smin

Smax−Smin
; ð4Þ

where SR
′ (x, y) is the mapped values at pixel position (x, y), Smax and Smin are respectively the

maximal and minimal saliency values. Figure 2e shows the depth saliency-computation results
obtained using (4).

However, simply considering the distance between the object and observer would disregard
other useful information of stereoscopic images, such as depth edges and profile details, which
are equally important for perception of depth saliency [28, 32]. Among various depth features
and their combinations, we choose depth contrast as the main indicator for complexity-
performance trade-off. This is because depth contrast is a dominant feature and an effective
indicator in depth perception [6]. Figure 3 illustrates the relationship between depth contrast
and saliency according to a subjective experiment [32]. Increase in the absolute value of depth

increases the fixation probability P C ¼ 1j f contrast
� �

.
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Therefore, the DoG filter is employed to extract the depth edge contrast from the disparity
map since it can eliminate anomalous noises of high-frequency signal. The DoG filter is
defined as:

G x; y;σð Þ ¼ 1

2πσ2
exp −

x2 þ y2

2σ2

� �
−

1

2πK2σ2
exp −

x2 þ y2

2K2σ2

� �
ð5Þ

where (x, y) is the pixel position, and σ and K are used to control the filter scale and center-
surround ratio, respectively. In our experiment, we set σ = 32 and K = 1.6 (approximate to the
Laplacian of the Gaussian transform), as commonly used in a previous study [34]. Figure 2f
shows the generated depth edge contrast map SE, the edges and profile details of objects are
well sharpened as desired. Higher contrast values indicate a larger distance between objects
and background, and a higher probability is depth-salient.

Finally, we obtain the depth saliency map (Sdep) by pooling the foreground saliency
map(S'R) and depth edge contrast map (SE) as follows:

Sdep ¼ wrS
0
R þ weSE; ð6Þ

where wr and we are the weights of the foreground and contrast saliency maps, wr and we are
set as 0.5. Figure 2 illustrates the depth-saliency computation process. Figure 2g illustrates the
final combined depth saliency map.

In addition, the 2D image saliency map Simg is computed using the Graph-Based Visual
Saliency (GBVS) method [13]. GBVS is one of the classic bottom-up visual saliency models
and shows a remarkable consistency with attention deployment of human subjects. Figure 4c
shows the computation results of the 2D saliency estimation.
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Fig. 3 The relationship between depth values and P C ¼ 1j f contrast
� �

. The y-coordinate P C ¼ 1j f contrast
� �

denotes the probability of fixation, and a higher P C ¼ 1j f contrast
� �

value yields a larger possibility of fixation,
where C is a binary random variable denoting whether a point is focused upon, and the random variable vector
f contrast denotes the depth contrast observed from this point
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2.2 Procurement of stereoscopic saliency map

Human visual perception studies have shown that stereoscopic images with excessive pro-
truding objects or excessive disparity [15] and those which affect the visual attention of
observers may cause discomfort to viewers. In other words, if someone feels discomfort for
some particular regions, he/she will not gaze at those regions. Hence, we linearly combined the
two saliency maps through a weighted sum and meanwhile considered the effect of visual
discomfort. The final stereoscopic visual saliency is expressed as

S3D x; yð Þ ¼ λ γSimg x; yð Þ þ 1−γð ÞSdep x; yð Þ� � ð7Þ

where S3D(x, y), Simg(x, y), and Sdep(x, y) are the 3D image, 2D image, and depth-saliency
values at pixel position (x, y) in S3D, Simg, and Sdep, respectively. γ is a weight with default
value 0.5, and λ is the VC factor at position (x, y):

λ ¼
1−

dp x; yð Þ−Tneg
�� ��
Tpos−Tneg

dp x; yð Þ < Tneg

1 Tneg ≤dp x; yð Þ≤Tpos

1 −
dp x; yð Þ−Tpos

Tpos−Tneg
dp x; yð Þ > Tpos

8>>>><
>>>>:

ð8Þ

where Tneg and Tpos are the lower and upper bound values of the stereoscopic comfort zone, and
are predetermined manually or statistically. Figure 4e shows the fusion results by using (7).

(a) (b) (c) (d) (e) (f)

Fig. 4 Examples of stereoscopic visual-importance-map estimation. a Left-view image. b Right-view image. c
2D saliency map. d Depth saliency map. e Stereoscopic saliency map. f Salient objects segmentation
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2.3 Salient object segmentation

In salient regions, salient objects attract the human eyes more than other objects. To
extract a salient object, we calculate the gray histogram of the visual saliency map
S3D, and select the appropriate threshold T to extract the salient object if the S3D(x, y)
is larger than the threshold T. The salient objects are obtained by

Sob j x; yð Þ ¼ 1 if S3D x; yð Þ > T ;
0 otherwise;

�
ð9Þ

where Sobj(x, y) is a two-valued function employed to extract salient objects, and T is
the adaptive threshold value that is determined by Otsu’s algorithm [24]. If the pixel
values in S3D are larger than T, they would become 1, which corresponds to the value
of a salient object; otherwise, the pixel values correspond to the value of a nonsalient
object. Figure 4f illustrates salient object extraction. As shown in Fig. 4, our method
can successfully predict a salient object by considering both depth edge contrast and
disparity magnitude information.

To verify the effectiveness of our saliency model, we compared it with five state-
of-the-art models proposed by Zhang et al. [34], Guo et al. [11], Hou et al. [14],
Harel et al. [13], and Jung et al. [17]. Figure 5 provides the saliency results of these
saliency models. Figure 5b shows that Zhang’s model can detect the object outline
clearly but may fail to appropriately detect salient regions, and has holes inside of the
detected objects. The phase spectrum of quaternion Fourier transform (PQFT) model
[11] can preserve the edges of objects but important objects may be missing from
salient regions [Fig. 5c]; the spectral residual (SR) method [14] is faster but its result
is imperfect [Fig. 5d]; the GBVS [13] predicts that human fixations are more reliable
than the aforementioned three methods [Fig. 5e]. Therefore, our model employs
GBVS to estimate 2D saliency. In Fig. 5f, Jung’s model obtains a depth saliency
map through linear disparity mapping. However, it has a unique problem: objects
closer to the viewer are not always highly salient. We can observe that, for the
saliency results of Ballet and Breakdancers (the bottom two rows) that obtained via
Jung’s model, the floor regions are regarded as salient regions, which is inaccurate
and inconsistent to human vision. This is not a region that people would typically
gaze at. In contrast, as shown in Fig. 5g, our model can successfully identify the
salient-object region of stereoscopic images, especially for the floor regions of Ballet
and Breakdancers sequences. This is because of the consideration of both disparity
change and depth contrast information and the combination of the two saliency maps
using a weighted sum in which the weights are affected by visual discomfort.

3 Stereoscopic image VC prediction

3.1 Perceptual features extraction

Previous studies reported that disparity magnitude and disparity gradient are two key
parameters for quantifying the visual comfort of stereoscopic images [25, 29]. When
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the disparity magnitude increases, mismatches of accommodation-vergence become
much more severe, which result in visual discomfort. On the other hand, the disparity
gradient specifies the difference of disparities between adjacent objects. As the
disparity gradient increases, the ability of binocular fusion decreases. Furthermore,
literature [36] indicates that the excessive luminance and chrominance difference
between the left and right images of stereo pairs may also cause visual discomfort
or fatigue.

Hence, in this subsection, we first extract disparity magnitude d(x, y), disparity gradi-
ent ∇d(x, y), luminance difference Δv(x, y) and chrominance difference Δh(x, y) from

(a) (b) (c) (d) (e) (f) (g)

0

1

Fig. 5 The results of saliency detection of various methods. a Original left images. b Zhang’s model. c PQFT
model. d SR model. e GBVS model. f Jung’s model. g Proposed model
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stereo image pairs as the significant perceptual features of VC, and then compute
saliency-weighted VC features X = [α1, α2, α3, α4] as

α1 ¼ 1

W

XM
x¼1

XN
y¼1

Sob j x; yð Þ• d x; yð Þj j ð10Þ

α2 ¼ 1

W

XM
x¼1

XN
y¼1

Sob j x; yð Þ• ∇d x; yð Þj j ð11Þ

α3 ¼ 1

W

XM
x¼1

XN
y¼1

Sob j x; yð Þ• Δv x; yð Þj j ð12Þ

α4 ¼ 1

W

XM
x¼1

XN
y¼1

Sob j x; yð Þ• Δh x; yð Þj j ð13Þ

where M and N are the width and height of the picture, W is a normalization factor defined as

W ¼
XM
x¼1

XN
y¼1

Sob j x; yð Þ ð14Þ

where Sobj(x, y) is the binary value at pixel (x, y) in the salient object map Sobj. The disparity
gradient value at a pixel (x, y) is defined by:

∇d x; yð Þ ¼ d xþ 1; yð Þ þ d x−1; yð Þ þ d x; yþ 1ð Þ þ d x; y−1ð Þð Þ=4−d x; yð Þ ð15Þ

The luminance difference Δv(x, y) and chrominance difference Δh(x, y) are calculated in
HSV (Hue, Saturation, Value) color space for its better fidelity to the mechanism regarding
how human eyes perceive color [27]. The absolute values of Δv(x, y) and Δh(x, y) at a pixel
position (x, y) can be calculated as:

Δv x; yð Þ ¼ vL x; yð Þ−vR x; yð Þj j ð16Þ

Δh x; yð Þ ¼ hL x; yð Þ−hR x; yð Þj j ð17Þ
where vL(x, y) and vR(x, y) (hL(x, y) and hR(x, y)) denote the luminance (chrominance) values in
the left image and right image, respectively. Note that the color images are generally described
in RGB color space, the convert equations for the RGB values into the HSV values can be
referenced in the previous work [9]. The range of hue in this context is normalized into [0, 1].
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3.2 Visual comfort objective evaluation

Based on the saliency-weighed VC feature vector X of a stereo image, its VC score is
calculated by a prediction metric f(X), i.e. VC = f(X). Here, we use ε − SVR model [31] to
construct the f(X), which is modeled as

f Xð Þ ¼
Xn

i¼1

αi−α*
i

� �
K Xi;Xð Þ þ b ð18Þ

where α and α∗ are the Lagrange multipliers, b is a bias. Following [31], the kernel function
K(Xi,X) that performs non-linear transform is defined as:

K Xi;Xð Þ ¼ e−γ Xi−Xk k2 ð19Þ
where γ is the variance of the kernel function. To implement the SVR, the LibSVM package
[3] is used, where the parameters are determined by cross-validation during the training
process. The penalty parameter C is employed to control the complexity of the prediction
function. Here, we set ε = 0.1, C = 64, and γ = 1 as a result of the exhaustive grid search.

4 Experimental results

4.1 Dataset

A publicly available stereoscopic image database, provided by the IVY Lab [16], was used for
experiments to verify the effectiveness of our proposed VC prediction approach. The IVY Lab
database was captured by a 3D digital camera (Fujifilm FinePix 3D W3®) with a spatial
resolution of 1920 × 1080 pixels. It consists of 120 stereo images, along with associated Mean
Opinion Score (MOS). To consider the diversity of disparity structures, the 120 stereo images
were divided into 62 indoor and 58 outdoor scenes, which contain various types of objects
with diverse shapes and depths. Furthermore, each stereo image was assessed by the single
stimulus method of ITU-R BT.500-11 with a five-grade scale (1: extremely uncomfortable; 2:
uncomfortable; 3: middle comfortable; 4: comfortable; 5: very comfortable).

4.2 Performance assessment

In our experiment, 300-times 10-fold cross-validation [19] was employed to assess the performance
of the proposed VC prediction approach. We randomly partitioned the stereoscopic image sample
sets into 10 subsets, 9 of all were used as training set, and the remaining one was retained as the
validation set for testing the model. In order to avoid influences of some nonlinear factors which
come from the subjective evaluation, we employ five-parameters Logistic function [10] to nonlinear
fit the predicted comfort metric f(X), and the final visual comfort prediction scores are given by:

MOS ¼ b1•
1

2
−

1

1þ exp
�
b2• f Xð Þ−b3ð Þ

� 	
0
@

1
Aþ b4• f Xð Þ þ b5 ð20Þ
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where parameters b1, b2, b3, b4, and b5 are determined by using nonlinear optimization (b1 = 0.474,
b2 = 102.39, b3 = 2.618, b4 = 0.853 and b5 = 0.343).

The four commonly used performance metrics: 1) Pearson Linear Correlation Coefficient
(PLCC), 2) Kendall Rank-Order Correlation Coefficient (KROCC), 3) Mean Absolute Error
(MAE) and 4) Root Mean Square Error (RMSE) between the subjective MOS scores and the
fitted prediction scores, are utilized to measure quantitative correlation between prediction
results and subjective comfort. Values of PLCC and KROCC approach to 1 mean high
correlation with MOS. Conversely, the predicted results are more accurately if the values of
MSE and RMSE are smaller. We compared our method with the other four popular VC
prediction methods: Jung’s method [17], Choi’s method [5], Lambooij’s method [20] and
Kim’s method [19]. We implemented these methods and adjusted the parameters for each
method for a fair comparison. For Choi’s method, the visual fatigue factors caused by temporal
complexity and scene movement were removed. Furthermore, in order to examine the effects
of different features on visual comfort, we also took various combinations of visual perceptual
features (X = [α1,α2], or X = [α1,α2,α3], or X = [α1,α2,α4]), and conducted a comparison
between different combinations.

4.3 Experimental results and analyses

Tables 1 and 2 tabulate the comparison results of different methods and different perceptual
feature combinations. From the tables, we can see that our method outperforms Jung’s, Choi’s,
Lambooij’s and Kim’s methods with 0.016, 0.193, 0.102 and 0.051 gains in PLCC, 0.014,
0.198, 0.108 and 0.047 gains in KROCC, 0.03, 0.199, 0.095 and 0.055 decreases in MAE, and
0.024, 0.198, 0.095 and 0.068 decreases in RSME, respectively. Thus, PLCC and KROCC of
our proposed method are 0.865 and 0.675 respectively, which are highest values among the
benchmarks. Meanwhile, the MAE and RMSE of the proposed algorithm are 0.322 and 0.416,
which are the lowest values among the benchmarks. Overall, the proposed approach achieves
the best consistency in predicting the VC.

Moreover, we investigate the contributions of adopting different features. As tabulated in
Tables 1 and 2, the saliency-weighted disparity magnitude α1 and disparity gradient α2 have
greater impact on visual comfort, while saliency-weighted luminance difference α3 and color
difference α4 have less impact, especially color difference. This is because small color
differences are corrected by the irises of the eyes. Our proposed method which used all of
the extracted features (X = [α1,α2,α3,α4]) has the best performance. This means that, based
on the extraction of disparity magnitude, disparity gradient, luminance difference and chro-
minance difference of the stereo image pairs, the proposed objective VC prediction method are
highly consistent with human visual system, and successfully predicted the visual comfort
scores of stereo images.

Figure 6 shows the MOS results of the predictive visual comfort for stereoscopic
images by using the proposed method and others, where the blue bar is the subjective

Table 1 PLCC and KROCC of the different methods and different features extraction

Indicator Proposed Jung[17] Choi[5] Lam[20] Kim[19] [α1,α2] [α1,α2,α3] [α1,α2, α4]

PLCC 0.865 0.849 0.672 0.763 0.814 0.854 0.856 0.857

KROCC 0.675 0.661 0.477 0.567 0.628 0.655 0.671 0.668

23510 Multimed Tools Appl (2017) 76:23499–23516



Table 2 MAE and RMSE of the different methods and different features extraction

Indicator Proposed Jung[17] Choi[5] Lam[20] Kim[19] [α1,α2] [α1,α2,α3] [α1,α2, α4]

MAE 0.322 0.352 0.521 0.417 0.377 0.340 0.329 0.334

RMSE 0.416 0.440 0.614 0.511 0.484 0.435 0.424 0.420
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Fig. 6 Evaluation results for the visual comfort prediction. a a set of comfortable stereo images (visual comfort
score >3.0); b a set of uncomfortable stereo images (visual comfort score <3.0)
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evaluation result, the baby-blue bar represent the proposed method, while the other
four different color bars stand for the results of Jung [17], Choi [5], Lambooij [20]
and Kim [19], respectively. Figure 6a shows VC scores of 15 comfortable stereo
images, whose visual comfort scores are all larger than 3.0. We can see that the
predicted MOS values of the proposed method are more approach to the subjective
MOSs than the other methods. Furthermore, Fig. 6b shows VC scores of 15 uncom-
fortable stereo images, whose visual comfort scores are all less than 3.0. It can be
observed that the predicted results of our method have some deviation, but comparing
to the results from the methods proposed in [5, 17, 19, 20], our prediction values are
much closer to MOSs and hence can predict visual comfort more effectively. This is
because our proposed method not only exploits the depth contrast in depth saliency
detection but also uses multiplication to combine depth saliency and 2D saliency,
which improves the accuracy of stereoscopic saliency detection. In addition, in order
to further improve VC prediction accuracy, our method extracts luminance difference
and chrominance difference as additional comfortable perceptual features. Meanwhile,
our method reduces unimportant saliency-weighed VC feature impacts by using salient
object extraction.

In addition, we provide the scatter plot to show the relationship between subjective
MOSs and prediction scores using the proposed method. As shown in Fig. 7, the
prediction results of the proposed method are concentrated and almost be a good
linear relationship with subjective MOS values. Hence, the proposed method is highly
correlated with the human visual perception and can effectively predict the VC of
stereo images.
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Fig. 7 Scatter plot between subjective scores and predicted visual comfort scores with the proposed method
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5 Conclusions

When analyzing the VC of stereoscopic images, it is important to consider visual
attention over a perceived stereoscopic space. Thus, we proposed a VC prediction
method based on a visual saliency model in this paper. To detect stereoscopic salient
areas, we first extracted foreground salient regions and depth-edge contrast map from
the disparity map to obtain the depth saliency map, and combined the depth and 2D
saliency maps by using a weighted sum in which the weights were adjusted by visual
discomfort. The proposed stereoscopic saliency model successfully preserved the
edges and profile salient information of objects. Besides, to improve the prediction
accuracy of VC, we extracted the salient object from the stereoscopic saliency map.
Next, we extracted some important perceptual features including disparity magnitude,
disparity gradient, and luminance and chrominance difference values from stereoscopic
image pairs, and combined these features to construct the objective VC predictor. The
experimental results indicate that the proposed predictor successfully improves the VC
prediction accuracy of stereoscopic images. The VC prediction of stereo images can
be applied to various applications such as 3D movie production, stereo image com-
pression, and 3D quality evaluation. In future, we will attempt to extend our model to
a 3D video by considering more perception features such as object motion and
disparity change of objects of different sizes.
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