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Abstract—In three-dimensional videos (3-DVs) with n-view texture
videos plus n-view depth maps, virtual views can be synthesized from
neighboring texture videos and the associated depth maps. To evaluate
the system performance or guide the rate-distortion-optimization pro-
cess of 3-DV coding, the distortion/PSNR of the virtual view should
be calculated by measuring the quality difference between the virtual
view synthesized by compressed 3-DVs with one synthesized by uncom-
pressed 3-DVs, which increases the complexity of a 3-DV system. In
order to reduce the complexity of 3-DV system, it is better to esti-
mate virtual view distortions/PSNR directly without rendering virtual
views. In this paper, the virtual view synthesis procedure and the dis-
tortion propagation from existing views to virtual views are analyzed
in detail, and then a virtual view distortion/PSNR estimation method
is derived. Experimental results demonstrate that the proposed method
could estimate PSNRs of virtual views accurately. The squared correla-
tion coefficient and root of mean squared error between the estimated
PSNRs by the proposed method and the actual PSNRs are 0.998 and
2.012 on average for all the tested sequences. Since the proposed method
is implemented row-by-row independently, it is also friendly for parallel
design. The execute time for each row of pictures with 1024×768 reso-
lution is only 0.079 s, while for pictures with 1920×1088 resolution it is
only 0.155 s.

Index Terms—Distortion estimation, 3DV, video coding.

I. INTRODUCTION

W ITH the improvements in high-speed networking, high-
capacity storage, and high-quality auto-stereoscopic display

technologies, extensive commercial applications of three-dimensional
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video (3DV) are becoming reality, e.g., the well-known 3D tele-
vision (3DTV) [1] and free viewpoint television (FTV) [2]. In
a typical 3DV system, which includes capture, storage, transmission,
and display, a 3D scene should first be represented efficiently by
using a small amount of data [3]. Among 3D scene representation
technologies [3], representations made by n-view texture videos plus
n-view depth maps have been used extensively. For this kind of scene
representation, virtual views should be rendered from the acquired
n-view videos and their corresponding n-view depth maps by depth
image-based rendering (DIBR) [4].

In order to obtain the distortion or quality of the virtual view for
high-efficiency 3DV coding (3DVC) and 3DV quality assessment,
the distortion or PSNR of the virtual view can be calculated by com-
paring a virtual view synthesized by compressed 3DVs and the one
synthesized by uncompressed 3DVs, which increases the complexity
of a 3DV system. A more economical way is to estimate the value
of the virtual view’s distortion/PSNR directly. In [5], Zhang et al.
proposed a regional based virtual view distortion estimation method
for depth maps coding. In [6], a linear model based virtual view
distortion estimation method was proposed for depth maps cod-
ing. In our previous work [7], a planar model based virtual view
distortion estimation method was proposed for joint bit allocation
between texture videos and depth maps. Besides, similar distortion
models and applications can also be found in [8]–[10]. The existing
methods [5]–[10] can estimate the distortion variation tendency to
some extent, but the estimated virtual view distortion may not be close
to the actual distortion. In order to estimate the virtual view distor-
tion accurately, a synthesis distortion estimation method is proposed
in [11]. In this method, the effect of depth map distortion on synthesis
distortion is broken down into 2 parts, spatial variant region and spa-
tial invariant region, based on frequency domain analysis. However,
the model cannot be used easily due to its high computational
complexity.

From the basis of DIBR technology, it can be concluded that
the distortion of the virtual view depends only on the distortion
of the left and the right texture views and depth maps when the
camera systems are calibrated well [7]. Since the DIBR technol-
ogy is mathematically analytical, the distortion of virtual view can
also be mathematical derived from the distortion of the left and
the right texture views and depth maps. Motivated by this point,
a fast and accurate virtual view distortion/PSNR estimation method
is proposed by detailed analyzing of the virtual view synthesis
procedure.

To estimate the distortion/PSNR for virtual view accurately
with low complexity, DIBR procedure and distortion propagation
from existing views to virtual views are analyzed in detail in
Section II. During the analysis, it is necessary to mention that
the DIBR procedure is equal to disparity compensation when all
the cameras are well calibrated [7], thus a depth coding error
can only affect the horizontal position of the projected pixels
in the virtual view. In addition, for clear representation, a sum-
mary of some frequently used notations are given in Table I.
Experimental results and conclusions are given in Section III and IV
respectively.
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TABLE I
NOTATIONS

II. PROPOSED VIRTUAL VIEW DISTORTION/PSNR
ESTIMATION METHOD

In a 3DV system, depth maps are used for rendering virtual views.
Depth map compression will affect the quality of virtual views
indirectly. For a set of well-calibrated 3D videos captured by cameras
with parallel arrangements, DIBR can be represented as a dispar-
ity compensation procedure [12] in which the relationship between
a depth value and the corresponding disparity value can be written
as (1) [13],

I = 255 ·
(

disp

Focal · Baseline
− 1

Zfar

)/(
1

Znear
− 1

Zfar

)
, (1)

where I denotes the pixel value of the depth map, disp denotes the
corresponding disparity value, Focal is the focal length, Baseline is
the baseline width (horizontal interval between 2 view points), and
Znear and Zfar are the nearest and farthest object distances from the
scene. Equation (1) could be rewritten as a simple form,

I = α · disp + β, (2)

where α and β depend on camera parameters, i.e., Focal, Baseline,
Znear, and Zfar. When depth maps are compressed, the reconstructed
pixel value I′ could be represented as,

I′ = α · d′
isp + β, (3)

where d′
isp is the corresponding disparity value of I′. Therefore, the

relationship between the depth error ed and the disparity error can
be written as,

ed = α ·
(

disp − d′
isp

)
= α · edisp, (4)

which means that the disparity error edisp varies linearly with the
depth error ed .

In a typical virtual view synthesis procedure, as shown in Fig. 1, the
existing texture videos (left view and right view) and the associated
depth maps (left depth map and right depth map) are first warped
to the virtual view position to generate 2 virtual views (generated
from the left view and right view, respectively) and 2 virtual depth
maps (generated from the left depth map and the right depth map).

Fig. 1. Flow diagram for VSRS 1D mode [14].

Fig. 2. Pixel projection with and without depth coding error.

At the same time, 2 boundary masks are also generated from the left
and right depth maps. Then, the 2 virtual views and virtual depth
maps are merged to generate a virtual view and a virtual depth map,
while the 2 boundary masks are merged to generate a hole mask.
Finally, the merged virtual view and depth map are modified by the
hole mask to generate the final virtual view and virtual depth map.
From the virtual view synthesis procedure, we can observe that the
occlusion and dis-occlusion areas are small and can be filled well.
Therefore, in the research, we do not treat the occlusion and dis-
occlusion areas specially.

From Fig. 1, the coding error of depth maps will first affect the
quality of the 2 virtual views (denoted as Vl and Vr, respectively)
generated from the left and right views, and then affect the quality
of the final merged virtual view (denoted as Vm). Let ed,l(x) and
ed,r(x) represent the coding error of pixel x in the left and the right
depth maps, respectively; Il(x) and Ir(x) represent the original depth
pixel values of x; and I′l(x) and I′r(x) represent the reconstructed depth
pixel values of x. Accordingly, the corresponding disparity of Il(x),
Ir(x), I′l(x), and I′r(x) could be represented as disp,l(x), disp,r(x), d′

isp,l
(x), and d′

isp,r (x), respectively.
When the left view depth map is not compressed, as shown in the

solid red line of Fig. 2, the pixel position xl in the compressed left
view (T′

l) will be warped to pixel position xvl in Vl, i.e.,

xl-disp,l(xl) = xvl. (5)
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When the left view depth map is compressed, as shown in the dotted-
red line of Fig. 2, due to the assured ed(xl), we only confirm that
xl may be projected to another pixel position rather than xvl, while
another pixel position yl will be projected to xvl, as shown by the
dotted- green line of Fig. 2, i.e.,

yl-d
′
isp,l(yl) = xvl. (6)

However, yl is not assured, and we only confirm that yl depends on
the compression of the left view depth map. Therefore, yl is con-
sidered a stochastic variable for a certain pixel position xvl in Vl.
Subsequently, the squared error (SEl) of the xvl

th pixel in a row of
the virtual view can be written as,

SE(xvl) = [
T ′

l (xl) − T ′
l (yl)

]2
, (7)

in which the relationship between xl and yl can be written as,

xl-disp,l(xl) = yl-d
′
isp,l(yl). (8)

Taking (2) and (3) into consideration, (8) can be rewritten as,

yl = xl − disp,l(xl) + d′
isp,l(yl)

= xl − [
Il(xl) − β

]
/α + [

I′l(yl) − β
]
/α

= xl − [
Il(xl) − I′l(yl)

]
/α

= xl − [
Il(xl) − I′l(xl) + I′l(xl) − I′l(yl)

]
/α

= xl − [
ed,l(xl) + I′l(xl) − I′l(yl)

]
/α

= xl − �l(xl) − τl(xl, yl),

(9)

where

�l(xl) = ed,l(xl)/α, (10)

τl(xl, yl) = [
I′l(xl) − I′l(yl)

]
/α. (11)

Accordingly, SE(xvl) can be represented as,

SE(xvl) = [
T ′

l (xl) − T ′
l (yl)

]2

= [
T ′

l (xl) − T ′
l (xl − �l(xl) − τl(xl, yl))

]2
.

(12)

It can be observed from (12) that the SE(xvl) can be calculated
when �l(xl) and τ l(xl, yl) are confirmed. Because �l(xl) can be
obtained from the assured ed,l(xl) and α directly, the main problem
is how to obtain τ l(xl, yl). From (9), we can observe that τ l(xl, yl)
depends on I′l(xl)-I

′
l(yl), in which I′l(xl) and I′l(yl) represent the pixel

values of positions xl and yl in the reconstructed left view depth
map. Therefore, τ l(xl, yl) is in turn determined by yl. Since yl can
be considered a stochastic variable, τ l(xl, yl) can also be considered
a stochastic variable. Thus, in order to calculate (12), the expectation
of τ l(xl, yl) can be used to replace itself.

In order to calculate the expectation of τ l(xl, yl), the probability
density function of τ l(xl, yl) must be confirmed first. Because yl and
τ l(xl, yl) are affected directly by the position (disparity) error edisp,l,
which is determined by the coding error of the depth map as shown
in (4), the probability density function of yl and τ l(xl, yl) is the
same as that of edisp,l, which is highly correlated with ed,l. Note
that edisp,l and ed,l refer to stochastic variables whose probability
density function could be obtained by statistic histogram of all the
depth coding errors and the corresponding disparity errors in a row of
the left view. Therefore, for a certain xl, the expectation of τ l(xl, yl)
can be calculated by (13),

E{τl(xl, yl)} =
∑

τl(xl,yl)

f (τl(xl, yl))τl(xl, yl)

=
bl∑

yl=−bl

f (yl)τl(xl, yl)

=
bl∑

yl=−bl

f
(
edisp,l

)
τl(xl, yl),

(13)

Fig. 3. Proposed virtual view distortion estimation procedure.

where f (τ l(xl, yl)) and f (yl) are the probability density functions
of τ l(xl, yl) and yl, f (edisp,l) is the probability density function of
edisp,l, and bl is the maximum distance between xl and yl, and can
be calculated by (14),

bl = max{�l(0), �l(1) · · · �l(W − 1)}, (14)

where �l(0), �l(1), . . . , and �l(W-1) are the disparity errors of each
pixel position in a row, and W is the width of the picture.

As a result, the mean squared error of a row in Vl can be written as,

MSErow,l

= 1

W

W−1∑
xvl=0

SE(xvl)

= 1

W

W−1∑
xl=0

[
T ′

l (xl) − T ′
l (xl − �l(xl) − τl(xl, yl))

]2

≈ 1

W

W−1∑
xl=0

[
T ′

l (xl) − T ′
l (xl − �l(xl) − E{τl(xl, yl)})

]2
.

(15)

Subsequently, by using the same method, MSErow,r can be calcu-
lated as,

MSErow,r

≈ 1

W

W−1∑
xr=0

[
T ′

r(xr) − T ′
r(xr − �r(xr) − E{τr(xr, yr)})

]2
.

(16)

Then, for each row of the merged virtual view, the mean squared
error (denoted as MSErow) can be written as,

MSErow = ωlMSErow,l + ωrMSErow,r, (17)

where ωl and ωr are weighted coefficients (defined as 0.5 for both
ωl and ωr) for the left and the right view respectively. Finally, for
the whole virtual view image, the mean squared error (MSE) can be
written as,

MSE =
H−1∑

row=0

MSErow, (18)

where H is the height of the virtual view image.
Based on the above analysis, the virtual view distortion can be

estimated by the following procedure, as shown in Fig. 3.
Step 1: Calculate the coding error, i.e., ed,l and ed,r , as well as

the corresponding �l and �r for all the pixels in the left and the
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TABLE II
IMPORTANT ENCODER PARAMETERS

right view depth maps, where �r represents the disparity error of
each pixel position of the right view;

Step 2: Calculate bl and br based on the maximum value of �l
and �r;

Step 3: Calculate E{τ l(xl, yl)} by using (13);
Step 4: Calculate E{τ r(xr , yr)} by the same way of Step 3.
Step 5: Calculate MSErow,l and MSErow,r for the each row based

on (15) and (16).
Step 6: Calculate MSErow based on (17) for each row, and get the

final MSE of virtual view based on (18).

III. EXPERIMENTAL RESULTS

In order to verify the accuracy of the proposed PSNR esti-
mation method, 8 3DV sequences [15] that are adopted by Joint
Collaborative Team on 3D Video Coding (JCT-3V), i.e., BookArrival
(view 10 and 8 are coded, view 9 is set as virtual view),
Newspapercc (view 4 and 6 are coded, view 5 is set as virtual
view), Kendo (view 1 and 3 are coded, view 2 is set as virtual view),
Balloons (view 1 and 3 are coded, view 2 is set as virtual view),
GhostTwonFly (view 5 and 9 are coded, view 7 is set as virtual
view), UndoDancer (view 1 and 5 are coded, view 3 is set as vir-
tual view), PoznanStreet (view 4 and 5 are coded, view 4.5 is set as
virtual view), and PoznanHall2 (view 6 and 7 are coded, view 6.5 is
set as virtual view), with different content and camera parameters
were used.

The sequences are encoded with texture/depth QP pairs of (15, 24),
(20, 29), (25, 34), (30, 39), (35, 42), and (40, 45) by 3D video cod-
ing test platform version 9.2 (3D-HTM9.2) [16] with configurations
defined by JCT-3V common test condition [17], as shown in Table II.

Fig. 4. Actual PSNRs and estimated PSNRs comparison, the 1st frame with
different QPs.

The View Synthesis Reference Software [16] adopted by JCT-3V was
used for rendering virtual views. The proposed distortion estimation
method was implemented on Matlab Version 7.12.0 without any opti-
mization and was executed on an Intel Core T5500 CPU with 2.0GHz
basic frequency.

The estimated PSNRs of the proposed method, the method in [6],
and the state-of-the-art method in [11], and the actual PSNRs of
synthesized virtual views are compared in Fig. 4 and Table III.

Table IV shows the squared correlation coefficients (SCC) and the
root mean squared error (RMSE) of the actual PSNRs and the esti-
mated PSNRs calculated by different methods. From Table IV, it
can be observed that the SCC and RMSE between the estimated
PSNRs by the proposed method and the actual PSNRs are 0.998
and 2.012 on average, respectively, while those between the esti-
mated PSNRs by the method in [6] and the actual PSNRs are 0.896
and 3.879, and those between the estimated PSNR by the state-of-art
method in [11] and the actual PSNRs are 0.999 and 1.406. Therefore,
it can be concluded that the proposed method is more accurate the
method in [6] and is close to the state-of-the-art method in [11].

Fig. 5 shows the comparison of the estimated PSNRs for differ-
ent frames with a same pair (QPt=25, QPd=34) for all the tested
sequences. It can be observed that the proposed method could
estimate the PSNR trends (along with frames) accurately. The esti-
mated PSNRs are close to the actual PSNRs, and the accuracy of
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TABLE III
COMPARISONS AMONG DIFFERENT METHODS

the proposed method is comparable to that of the start-of-the-art
method in [11].

Moreover, Table V compares the complexity of the proposed
method with the method in [6], and the state-of-the-art method [11].
From Table V, we can observe that the average execute time

of the proposed method for pictures with 1024×768 resolution
is 60.781s, while that for pictures with 1920×1088 resolution is
168.377s. It should be noted that the proposed method is friendly
for parallel design, i.e., each row can be processed independently.
When using parallel processing (e.g., one row corresponds to one core
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TABLE IV
SCC AND RMSE BETWEEN THE ACTUAL PSNRS

AND THE ESTIMATED PSNRS

Fig. 5. Actual PSNRs and estimated PSNRs comparison, successive
25 frames with the same QP pair (QPt=25,QPd=34).

of a Graphic Process Unit), the execute time for each row of pictures
with 1024×768 resolution is only 60.7813/768=0.079s, while for pic-
tures with 1920×1088 resolution it is only 168.3772/1088=0.155s.
Although the complexities of the method in [6] is smaller than those
of the proposed method, the estimated PSNRs of those methods are
not accurate enough. Compared with the state-of-the-art method [11],
the proposed method could give similar estimation accuracy with
much lower complexity and is more suitable for parallel design.

TABLE V
EXECUTE TIME COMPARISONS

Although the execute time may be reduced by using a simplified
method to calculate the power spectrum density in [11] of the texture
picture, some complex operations, i.e., boundary detection, Fourier
Transform, etc., are still needed; while in the proposed method, the
distortions/PSNRs could be calculated row by row directly in the
spatial domain that is parallel friendly.

IV. CONCLUSION

In this paper, a fast and parallel-design-friendly virtual view
distortion/quality (evaluated by PSNR) estimation method is pro-
posed based on detailed analysis of virtual view synthesis procedure.
Experimental results show that the proposed method can estimate the
PSNRs of virtual views accurately. The SCC and RMSE between the
PSNRs estimated by the proposed method and the actual PSNRs are
0.998 and 2.012 on average. In addition, the execution time for each
row of pictures with 1024×768 resolution is only 0.079s, while for
pictures with 1920×1088 resolution it is only 0.155s.

Since the main objective of depth coding is to compress depth
maps efficiently while guaranteeing the quality of synthesized virtual
views, the future work is to design novel rate distortion optimization
algorithms, efficient bit allocation, no-reference virtual view quality
assessment methods, etc., for 3DV application systems by employing
the model. In addition, in the proposed method, the estimated dis-
tortions are calculated based on the probability distribution of depth
coding errors; therefore, for block-based depth map coding, when
the pixel numbers are small (e.g., 16×16, 8×8, 4×4), the probabil-
ity distribution may not be accurate enough. In the future, we will
design a more flexible distortion estimation method for block-based
depth map coding.
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