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In this paper, we propose a novel stereoscopic image quality assessment (SIQA) method by learning non-
negative matrix factorization (NMF)-based color visual characteristics for monocular perception and con-
sidering binocular interactions. In training phase, a feature basis matrix is learned based on NMF by con-
sidering color information and a feature detector is designed by performing Schmidt orthogonalization on
the feature basis matrix. In construction of SIQA phase, for monocular perception, visual saliency regions
are selected and parts-based feature similarity indexes of left and right views based on the feature vectors
extracted by the feature detector are calculated. For binocular interactions, we calculate cyclopean fea-
ture similarity index by considering binocular fusion and rivalry. Finally, support vector regression is
used to simulate nonlinear relationship between monocular perception and binocular interactions.
Experimental results on LIVE 3D image databases and NBU 3D IQA database demonstrate that the pro-
posed SIQA method is more consistent with human perception.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Image quality assessment (IQA) is a crucial aspect in various
image processing applications, such as image communication,
image fusion, medical imaging, and so on [1–3]. Recently, three
dimensional (3D) video/image and the related technologies have
drawn great concern in academic researches and relative applica-
tions. Unfortunately, 3D visual distortion is almost unavoidable
during 3D content creation, compression, network transmission
and stereoscopic display. These distortions may cause 3D visual
signals to be unsatisfactory in terms of the end-user 3D quality
of experience [4]. Therefore, stereoscopic image quality assessment
(SIQA) is essential to optimize 3D content production and process-
ing [5–8].

Generally, SIQA in 3D video/image systems can be categorized
into subjective and objective assessments [9–12]. Since human is
the final receiver of the visual signal, subjective SIQA methods pro-
vide the ultimate perceptual quality evaluation of stereoscopic
images. Recently, there are 8 subject-rated image databases
including LIVE 3D Image Quality Database Phase I [13], LIVE 3D
Image Quality Database Phase II [14], IRCCyN/IVC 3D Images Data-
base [15], MICT 3D Image Quality Evaluation Database [16],
MMSPG 3D IQA Database [17], NBU 3D IQA database [18], Tianjin
University 3D IQA database [19], andWaterloo-IVC 3D Image Qual-
ity database [20]. Subjective data is important for understanding
the visual perception of stereoscopic images. However, subjective
quality assessment is infeasible for many applications since the
subjective tests are inconvenient, time-consuming and expensive.
Therefore, it is necessary to develop objective SIQA methods for
evaluating the performance of 3D image processing technologies.
During recent years, a number of SIQA methods have been pro-
posed. According to the use of 3D perception, existing objective
SIQA methods may be grouped into two categories: (1) the SIQA
methods based on monocular IQA (MIQA) metrics [21,22,15,23],
(2) the SIQA methods based on 3D perceptual properties [24–28].

For the SIQA methods based on MIQA metrics, the most
straightforward way is to use state-of-the-art MIQA metrics to
evaluate the quality of the left and right views and to get the qual-
ity score of the stereoscopic image through the left and right
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weights [29]. However, some researchers have provided evidence
that the perceived quality of stereoscopic images cannot be
expressed simply as the average quality of the left and right views
[22]. To evaluate the stereoscopic image quality more accurately,
researchers have taken into account the effect of disparity/depth
information. Yang et al. [22] proposed a SIQA model based on the
average PSNR of left and right views and the absolute difference
with respect to the disparity map. Benoit et al. [15] presented a lin-
ear combination for disparity distortion and the measurement of
2D image quality on both views. You et al. [23] investigated differ-
ent MIQA metrics on a single view and integrated the disparity
information into SIQA. However, it is not effective to assess the
quality of perceived depth information since stimuli regarding per-
ceived depth are different from those for MIQA. In addition, the
ground truth of the disparity map is generally not available, and
the estimated disparity map is usually inaccurate.

To make SIQA better consistent with human perception, more
binocular perceptual characteristics of the human visual system
(HVS) should be considered. Ryu et al. [24] proposed a 3D-
version of SSIM based on binocular quality perception. Chen
et al. [25] proposed a ‘‘cyclopean” SIQA model accounting for
binocular rivalry issues. Shao et al. [26] classified stereoscopic
images into non-corresponding, binocular fusion and binocular
suppression regions and all effects are finally integrated into an
overall quality score. Zhou et al. [27] proposed a perceptual mod-
ulated feature similarity (PMFS) metric for SIQA by considering
the monocular and binocular perception properties. Lin and Wu
[28] incorporated binocular combination and binocular frequency
integration into the existing MIQA metrics to measure the per-
ceived quality of stereoscopic images. Lee and Lee [30] proposed
a 3D perception-based stereoscopic image quality pooling model,
which segments a stereoscopic image into binocular and monocu-
lar vision segments, and respectively evaluates them. Wang et al.
[20] proposed a binocular rivalry inspired multi-scale model to
predict the quality of stereoscopic images from the single-view
images. To improve SIQA method and simulate the properties of
visual perception, many simulated receptive field methods have
been proposed. Bensalma and Larabi [31] proposed a binocular
energy quality metric which simulated the HVS by modeling the
simple cells responsible for the local spatial frequency analysis
and the complex cells responsible for the generation of the binoc-
ular energy. Shao et al. [32] used multi-scales sparse coding to
learn binocular receptive field properties to be more in line with
human visual perception, and proposed a corresponding metric.
However, these methods only considered the luminance informa-
tion of stereoscopic image, and the color information is lost. To
overcome the shortcoming, the color information of stereoscopic
image is considered and non-negative matrix factorization (NMF)
is used to simulate parts-based perception of HVS. For parts-
based perception of HVS, a representation of the object in the brain
is segmented into separate parts and these parts and their relation-
ships are indexed [33,34]. In mathematics, NMF is able to learn the
intrinsic parts underlying the object being pictured [35]. This
parts-based representation under the non-negativity constraint
in NMF encourages sparsity and is conceptually similar to sparse
coding. Here, NMF is used to simulate parts-based perception of
HVS and learn local color visual characteristics.

In this paper, we propose a new SIQA method by learning NMF-
based color visual characteristics and considering binocular inter-
actions. The main contributions of this paper are as follows.

(1) A feature detector is derived based on NMF by considering
color information from the RGB channel of the training
images. The feature detector is able to extract the local color
properties of the testing image.
(2) In construction of SIQA phase, we consider the visual sal-
iency and compare the difference of the color feature vector
to calculate the feature similarity index for monocular
perception.

(3) Based on gain-control theory, binocular interactions are con-
sidered to simulate complex binocular perception.

This paper is organized as follows: The motivations of the pro-
posed SIQA method are presented in Section 2. The proposed SIQA
method is described in Section 3. Experimental results are dis-
cussed in Section 4. Finally, conclusions are given in Section 5.

2. Motivations

Different from MIQA methods, SIQA method should not only
consider MIQA method, but also binocular mechanism. Based on
[36], given left and right views of stereoscopic image, IL and IR,
the perceived quality f can be modeled as the posteriori probability
with the given left and right views:

PðfjIL; IRÞ ¼ PðIL; IRjfÞ � PðfÞ
PðIL; IRÞ ð1Þ

where PðIL; IRjfÞ is the inverse posterior probability for the given left
and right views with the perceived quality f, PðfÞ is the prior prob-
ability for the perceived quality f, and PðIL; IRÞ is the prior joint prob-
ability for the given left and right views.

PðIL; IRjfÞ can be decomposed as

PðIL; IRjfÞ ¼ PðILjfÞ þ PðIRjfÞ � aPðIL \ IRjfÞ ð2Þ
where PðIL \ IRjfÞ is the binocular interaction between the left and
right views with the perceived quality f, and a > 0 is a positive con-
stant to balance these aspects.

Using Eq. (2), Eq. (1) is rewritten as follows:

PðfjIL; IRÞ ¼ ðPðILjfÞ þ PðIRjfÞ � aPðIL \ IRjfÞÞ � PðfÞ
PðIL; IRÞ

¼
PðILÞ�PðfjILÞ

PðfÞ þ PðIRÞ�PðfjIRÞ
PðfÞ � a PðIL\IRÞ�PðfjIL\IRÞ

PðfÞ

� �
� PðfÞ

PðIL; IRÞ
¼ PðILÞ

PðIL; IRÞ � PðfjILÞ þ
PðIRÞ

PðIL; IRÞ � PðfjIRÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Monocular perception

� a � PðIL \ IRÞ
PðIL; IRÞ � PðfjIL \ IRÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Binocular interaction

ð3Þ

According to Eq. (3), the quality of monocular perception is
measured by the visual quality of the left and right views, and
the visual quality of binocular interactions is measured by visual
quality of the corresponding cyclopean image. Thus, perceived
quality of stereoscopic image can be obtained by

Q ¼ PðILÞ
PðIL; IRÞ � QL þ

PðIRÞ
PðIL; IRÞ � QR � b � QC

¼ xL � QL þxR � QR � b � QC

ð4Þ

where xL ¼ PðILÞ
PðIL ;IRÞ and xR ¼ PðIRÞ

PðIL ;IRÞ are weights of the left and right

views, respectively, and b > 0 is a parameter to balance monocular
perception and binocular interactions.

Due to the complexity of binocular vision, the relationship
between monocular perception and binocular interactions is not
clear. It is difficult to quantify easily with the weight coefficient,
and b in Eq. (4) needs to be artificially controlled, which leads to
certain difficulties to the model. To solve this problem, we use
some nonlinear tool, such as support vector regression (SVR), to
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better describe the complex relationship between monocular per-
ception and binocular interactions.

2.1. Monocular perception

From a neuro-biological point of view, the goal of IQA is to sim-
ulate the perceptual mechanism of HVS. In HVS, there is a series of
cells from the retina to the cerebral cortex, which is described in
the receptive field (RF) model. The RF is the basic structural and
functional unit of the information processing in HVS and is usually
characterized to understand the behavior of visual perception. As
an important property of the RF, sparse coding can capture the sali-
ent structures in line with the visual perception and the perceptual
structural degradation of the distorted image is important for IQA
methods [37].

Since NMF does not allow negative entries in the matrix factors
and these non-negativity constraints lead to parts-based represen-
tation and sparsity, we want to use NMF to simulate properties of
the RF for monocular perception. Here, the color information of the
image is considered and the feature detector from the training
samples is obtained by using NMF. The perceptual structural
degradation of the distorted image can be evaluated by comparing
the difference between the features of the reference and distorted
images extracted by the feature detector. In addition, considering
the effect of visual attention on human perception, the saliency
detection model is used to extract the visually important region.

2.2. Binocular interactions

In addition to monocular perception, we also need to consider
binocular interactions in SIQA method. When different images are
presented to the left and right eyes, only a single, combined ‘‘cyclo-
pean” is perceived. Some biological models have been proposed to
describe binocular interactions. Levelt [38] proposed an eye-
weightingmodel for describing thebinocular combination,which is,

f C ¼ x1 � IL þx2 � IR ð5Þ
where x1 and x2 are the weights of the left and right views respec-
tively, and x1 þx2 ¼ 1. The eye-weighting model is simple but
cannot explain Fencher’s paradox and the cyclopean perception
[39].

To consider binocular fusion and rivalry, Ding and Sperling [40]
proposed the gain-control model as

f CðIL; IRÞ ¼
1þ EL

1þ EL þ ER

� �
� IL þ 1þ ER

1þ EL þ ER

� �
� IR

¼ gL � IL þ gR � IR ð6Þ
where EL and ER are the sums of energy over all the frequency chan-
nels for the left and right views, respectively. The gain-control
model can be used to describe binocular fusion and rivalry and
explain the cyclopean perception in SIQA.

Here, the gain control model and difference-of-Gaussian (DOG)
response are used to synthesize the cyclopean image and the visual
quality of the cyclopean image is employed to measure the quality
of binocular interactions.

3. The proposed SIQA method

The diagram for the proposed SIQA method is shown in Fig. 1.
The proposed SIQAmethod includes two stages: training of the fea-
ture detector (Fig. 1(a)) and construction of SIQA (Fig. 1(b)). In the
training phase, color information of stereoscopic image is consid-
ered and the NMF method is used to derive the color visual feature
detector D to simulate the RF. In the construction of SIQA phase, we
consider monocular perception as well as binocular interactions.
For monocular perception, a saliency detection model is exploited
to select visual saliency regions. Then, by using the feature detector
D to extract local color visual features from reference and distorted
image patches of visual saliency regions, the image quality of left
and right views are calculated, respectively. For binocular interac-
tion, we consider binocular fusion and rivalry by constructing
cyclopean image. Then, the quality of the cyclopean image is
obtained by calculating similarity between the reference and dis-
torted cyclopean image. Finally, the final quality score is obtained
by using nonlinear pooling method to simulate complex relation-
ship between monocular perception and binocular interactions.

3.1. Training phase

In this subsection, we assume that when the training sample is
sufficient, the testing sample is similar to the training sample. In
other words, we can get a feature extractor by enough training
image patches, then the extractor can be used to extract features
from the testing image patch. Therefore, a training database is first
constructed, and then a sufficient number of training image
patches are obtained.

To construct a training database, nine original images with dif-
ferent scenes are chosen from the Berkeley image segmentation
database [41], as shown in Fig. 2. Since the essence of the proposed
model is to measure the feature similarity between the reference
and distorted images based on NMF, we only consider the color
visual feature detector from the original images. Note that, the pro-
posed SIQA method does not highly depend on the training data-
base. The specific influences of the training database are
discussed in the next section.

After selecting the training database, numerous overlapping
image patches with the size of m�m are randomly taken from
the each training image. In the implementation, 2000 patches are
randomly selected for each training image (the number of image
patch equals n ¼ 2000� 9 ¼ 18;000). Then, each patch is vector-
ized into a sample vector by scanning the values in the patch
row-by-row and channel-by-channel. Here, since color information
is considered, the length K of the vector is K ¼ m�m� 3. Thus, all
the sample vectors form a sample matrix, X ¼ ½xij� ¼ ½X1;X2; . . . ;Xn�,
where each column Xi 2 RK�1 contains K pixels. In this paper, we
set m ¼ 8.

In the cerebral cortex, human has parts-based perception. In
mathematics, NMF method can be used to simulate this mecha-
nism well. Here, NMF method is used to decompose the matrix X
into a non-negative basis matrix and a coding matrix [35]. Specif-
ically, for the non-negative matrix X, NMF aims to find two non-
negative matrices, W ¼ ½wik� ¼ ½W1;W2; . . . ;Wr � 2 RK�r and
S ¼ ½sik� ¼ ½S1; S2; . . . ; Sn� 2 Rr�n such that:

X ¼ WS ð7Þ
where r > 0 is chosen to be smaller than n or K so that W and S are
smaller than the original matrix X.

To find an approximate factorization X ¼ WS, the Frobenius
norm is used to construct the cost function,

E ¼ min
WP0;SP0

kX �WSk2F ð8Þ

In this paper, we use the Lee-Seung multiplicative iterative
algorithm, and the specific process of the algorithm is shown in
Table 1.

Thus, the two nonnegative matricesW and S are calculated, and
the basis matrix W is needed.

After the above processing, each patch Ti can be represented as
a linear combination of a set basis function, e.g.,

Ti ¼ WFi ð11Þ
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where Fi is a feature vector after dimensionality reduction, and its
dimension is r.

Thus, using the generalized inverse matrix Wþ ¼ ðWTWÞ�1
WT ,

the feature vector can be obtained as follows:

Fi ¼ WþTi ð12Þ
Here, Schmidt orthogonalization is used to remove correlations

between the feature bases and a new orthonormal basis matrix is
obtained. The specific process is as follows,

a1 ¼ W1;

a2 ¼ W2 � WT
2a1

aT1a1
a1; . . . ;

ak ¼ Wk � WT
ka1

aT
1
a1
a1 � � � � � WT

kak�1

aT
k�1

ak�1
ak�1

ð13Þ

Thus, the new feature basis matrix Worth ¼ ½a1;a2; . . . ;ar � is

obtained, e.g., ðWorthÞTWorth ¼ I. Further, the generalized inverse

matrix of Worth is as follows,

D ¼ ððWorthÞTWorthÞ
�1
ðWorthÞT ¼ ðWorthÞT ð14Þ

Finally, Eq. (12) can be rewritten as follows,

Fi ¼ DTi ð15Þ
where D is the feature detector.
Fig. 3 shows an illustration of the feature detector, D, which

includes three RGB sections. Each element of the feature detector
is quantified into gray scale value. The feature detector D 2 Rr�192

can transform each patch vector Ti 2 R192�1 into a parts-based fea-
ture vector with length r. Each row element of D consists of three
sections corresponding to RGB channels, all row elements form
three sets, and each set contains r patches of size 8� 8. From
Fig. 3, it is clear that these patches are similar to the RF with differ-
ent directions. Investigating its reason NMF can learn parts-based
visual properties which is similar to the RF. Therefore, the feature
detector D can capture visual response of the RF.
3.2. Construction of SIQA

In this subsection, we consider monocular perception and
binocular interactions to model the proposed SIQA method and
use SVR to describe the nonlinear relationship between monocular
perception and binocular interactions.
3.2.1. Monocular perception
3.2.1.1. Selection of visual important regions. It is well-known that
the human focuses on some important regions when viewing an



Fig. 2. Selected original images for the training process of the proposed model.

Table 1
Description of the algorithm.

The Lee-Seung multiplicative iterative algorithm
Input: The matrix X and the parameter r.
Output: The basis matrix W and coding matrix S.
Algorithm:
Step 1: Initialize w1

ia > 0 and s1bj > 0: Set Titer ¼ 100.

Step 2: For k ¼ 1;2; . . . ; Titer , do

wkþ1
ia ¼ wk

ia
ðXðSkÞT Þia

ðWkSkðSkÞT Þia

(9)

skþ1
bj ¼ skbj

ððWkþ1ÞT XÞbj
ððWkþ1ÞTWkþ1SkÞbj

(10)

End
Step 3: Return the basis matrix W and coding matrix S.
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image. For IQA, the visual quality of the image is directly related to
the visually important regions. Here, we use the saliency detection
model to select the visually important regions of an image.
D

R G

Fig. 3. An illustration for the feature detector, D, which includes three sections c
In the following section, the left and right images are processed
in the same way, and the left image is taken as an example to
describe the algorithm processing. We use the saliency detection
model [42] to obtain the saliency maps of the left-reference image
ILref and its corresponding distorted image ILdis, respectively. Let M

L
ref

and ML
dis denote the saliency maps of ILref and ILdis, respectively. A

maximum combined saliency map ML at each point of ML
ref and

ML
dis is defined as follows,

ML ¼ maxðML
ref ;M

L
disÞ ð16Þ

the significance ofML is to obtain the maximum saliency map of the
left reference image and the corresponding distorted image.

To obtain visually import regions of the left image, ILref , I
L
dis and

ML are segmented into overlapping patches with the same size of
8 � 8, and these patches are vectorized and arranged in columns

of the matrices XLr , XLd and SL respectively.
B

orresponding to RGB channels. Patches of each section are similar to the RF.
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Let SLj denote the j-th column of the matrix SL, i.e., the j-th patch

of the maximum combined saliency map ML. Therefore, the sal-
iency value of the j-th patch is obtained as follows,

dj ¼
XN
i¼1

SLij ð17Þ

where SLij is the saliency value of the i-th pixel in the j-th patch and
N denotes the number of pixels in each patch. Here, N ¼ 8� 8 ¼ 64.
d�
i is obtained by sorting all of dj from large to small as follows,

d�
1 P d�

2 P � � � P d�
k ð18Þ

where k denotes the number of image patches.
Let t1 denote the number of selected maximum saliency

patches, t1 ¼ k1 � k, where k1 2 ð0;1� is the ratio coefficient of the
selected maximum saliency patches. Thus, the reference left image

patch YLr and the distorted left image patch YLd corresponding to
the maximum combined saliency patch d�

i of the former t1 are
selected, i.e.,

ðYLr;YLdÞ ¼ fðXLr
j ;X

Ld
j Þ

���j 2 labelfd�
i of the former t1gg ð19Þ

After the above processing, the final visually important left
reference-distorted patch pairs are selected. Similarly, the visually

important right reference-distorted patch pairs ðYRr ;YRdÞ can also
be determined. Based on [43], we select 10% highest saliency
patches, that is, we set k1 ¼ 0:1 for LIVE 3D databases and NBU
3D IQA database. Of course, we can choose three different optimal
k1 values for LIVE 3D databases and NBU 3D IQA database,
respectively.
3.2.1.2. Feature extraction. After the selection processing, the fea-
ture detector D is used to extract the feature vectors of the left
and right views, respectively:

uL
i ¼ D� YLr

i ð20Þ

and

vL
i ¼ D� YLd

i ð21Þ
Thus, the feature vectors uL

i 2 Rr�1 and vL
i 2 Rr�1 form twomatri-

ces, UL 2 Rr�t1 and VL 2 Rr�t1 . Since r < m, uL
i 2 Rr�1 and vL

i 2 Rr�1

can be represented by the active neurons, and the values of these
feature vectors represent the level of activity of the neurons.
Thereby, the visual responses of the image patches are estimated
by using the feature vectors.
3.2.1.3. Feature similarity index. To quantify the perceived quality of
the image, we compare the feature vector matrices UL and VL.
Therefore, the feature similarity ScoreLNMF of the left distorted image
among the feature vectors is defined as

ScoreLNMF ¼ 1� 1
r � t1

Xr

i¼1

Xt1
j¼1

ðuL
ij � vL

ijÞ
2 þ C

ðuL
ijÞ

2 þ ðvL
ijÞ

2 þ C
ð22Þ

where uL
ij and vL

ij denote the values of the i-th row and the j-th col-

umn in UL 2 Rr�t1 and VL 2 Rr�t1 , respectively. The parameter r

denotes the dimension of feature vectors uL
i 2 Rr�1 and vL

i 2 Rr�1.
t1 denotes the number of selected image patches. C is a constant
to avoid the denominator being zero. Here, we set C ¼ 0:08. Simi-
larly, the feature similarity index ScoreRNMF of the right distorted
image can be obtained.
3.2.2. Binocular interactions
In this subsection, we consider the influence of binocular inter-

actions on SIQA. We use gain control model and DOG responses to
synthesize reference and distorted cyclopean images. Then, we cal-
culate SSIM index to obtain the quality of distorted cyclopean
image.

To measure binocular interactions accurately, we reproduce the
cyclopean view in accordance with human perception. Generally,
the localized linear model and Gabor filter bank are used to synthe-
size a cyclopean image [25]. Here, different from Chen’s method,
we adopt gain control model and DoG responses to synthesize ref-
erence and distorted cyclopean images. Specific methods are
described below.

The disparity map between the left and right views is first esti-
mated by using a stereoscopic matching method [44]. The disparity
value is used to reflect the depth information of the stereoscopic
image. With the disparity map, Eq. (6) of the gain control model
can be rewritten by

f CðIL; IRÞ ¼
1þ ELðx; yÞ

1þ ELðx; yÞ þ ERðxþ d; yÞ
� �

� IL

þ 1þ ERðxþ d; xÞ
1þ ELðx; yÞ þ ERðxþ d; yÞ

� �
� IR ð23Þ

where d is the disparity value, and ELðx; yÞ and ERðxþ d; yÞ are the
sums of the total visually weighted contrast energies of the left
and right views, respectively.

From Eq. (23), it is found that ELðx; yÞ and ERðxþ d; yÞ must be
calculated to synthesize reference and distorted cyclopean images.
Here, we use DOG responses of all frequency channels to calculate
ELðx; yÞ and ERðxþ d; yÞ. DOG decomposition ILDOG of the left view is
defined as follows

ILDOG ¼ ðGðkrÞ � GðrÞÞ � IL ð24Þ

where Gð�Þ is the Gaussian kernel function with standard deviation
r, and k is a constant.

Therefore, according to Eq. (24), the different frequency channel
of ILDOG can be defined as follows

DL
i ¼ ðGðkirÞ � Gðki�1rÞÞ � IL; i ¼ 1; . . . ;n ð25Þ
Thus, the vector DðILÞ which represents different frequency

responses of the left image IL is defined by

DðILÞ ¼ ðDL
0;D

L
1; . . . ;D

L
nÞ ð26Þ

where DL
0 ¼ GðrÞ � IL � IL. Using Eq. (26), the vector DðILref Þ of the ref-

erence left image can be defined. Similarly, the vector DðIRref Þ of the
reference right image can also be defined.

According to DðILref Þ and DðIRref Þ, EL
ref ðx; yÞ and ER

ref ðxþ d; yÞ can be
calculated as

EL
ref ðx; yÞ ¼ kDðILref Þk22 ð27Þ

and

ER
ref ðxþ d; yÞ ¼ kDðIRref Þk22 ð28Þ

Then, using Eq. (23), a single cyclopean image ICref of the reference
stereoscopic image can be calculated. Similarly, a distorted cyclo-
pean image ICdis can be obtained.

Finally, the quality value ScoreC of the distorted cyclopean
image is obtained by using the SSIM index to measure the similar-
ity between the reference cyclopean image ICref and the distorted

cyclopean image ICdis.
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3.2.3. Nonlinear pooling

After obtaining monocular quality ScoreLNMF , Score
R
NMF and quality

ScoreC of the cyclopean image, how to measure the relationship
between monocular perception and binocular interactions remains
a problem. As discussed in Section 2, we use SVR to measure the
nonlinear relationship between monocular perception and binocu-
lar interactions.

The overall quality score, Q, of stereoscopic image can be calcu-
lated by using three quality scores fScoreLNMF ; Score

R
NMF ; ScoreCg and

a prediction function f, that is,

Q ¼ f ðScoreLNMF ; Score
R
NMF ; ScoreCÞ ð29Þ

where f : R3 ! R is the quality prediction function trained in
advance using SVR. Here, SVR trained the mapping function f which
takes three quality scores fScoreLNMF ; Score

R
NMF ; ScoreCg and produces

output as a corresponding difference mean opinion score (DMOS).
After obtaining the mapping function f, we use this function f to pre-
dict the visual quality of the stereoscopic image.

4. Experimental results and analyses

4.1. Databases and performance measures

(1) The LIVE 3D Phase I database [13] consists of 365 symmetri-
cally distorted stereoscopic images generated from 20 refer-
ence stereoscopic pairs by corrupting them with five
different distortion categories: JPEG 2000 (JP2K), the JPEG
compression standards, additive white Gaussian noise
(WN), Gaussian blur (Gblur) and a fast-fading (FF) model
based on the Rayleigh fading channel.

(2) The LIVE 3D Phase II database [14] consists of 120 symmet-
rically distorted stereoscopic images and 240 asymmetri-
cally distorted stereoscopic images generated from 8
reference stereoscopic pairs. It includes the same distortion
categories as Phase I. These types of distortions are symmet-
rically and asymmetrically applied to the left and right refer-
ence stereoscopic images at different levels.

(3) The NBU 3D IQA database [18] consists of 312 distorted
stereoscopic images generated from 12 reference stereo-
scopic pairs. Five types of distortions, JP2K, JPEG, WN, Gblur
and H.264, are symmetrically applied to the left and right
reference stereoscopic pairs at various levels.

To benchmark the performance of SIQA methods, three indexes
are used: the Spearman rank order correlation coefficient (SROCC),
the Pearson linear correlation coefficient (PLCC), and the root mean
squared error (RMSE). A perfect matching between the objective
and subjective scores will give SROCC ¼ PLCC ¼ 1 and RMSE ¼ 0.
For the nonlinear regression, the 4-parameter logistic function is
defined as follows [45]:

DMOSP ¼ b1 � b2

1þ exp � x�b3
jb4 j

� �þ b2 ð30Þ

where b1, b2, b3 and b4 are parameters of the regression model.
In the experiments, we randomly select 80% of a database con-

tent for training and the remaining 20% for testing. Specifically,
1000 randomly chosen training and testing sets are obtained, and
the average PLCC, SROCC and RMSE values are regarded as the final
result.

4.2. Overall assessment performance

In this subsection, to make a comprehensive analysis on the
proposed SIQA method, we compare the proposed SIQA method
with some existing SIQA metrics—five luminance information plus
energy response based SIQA methods (FI-PSNR, FI-SSIM, FI-VIF,
Bensalma’s method [31] and Shao’s method [32]) and three lumi-
nance plus disparity based SIQA methods (Benoit’s method [15],
You’s method [23] and Chen’s method [25])—on the overall distor-
tions of the three benchmark databases in terms of SROCC, PLCC,
and RMSE.

The values of SROCC, PLCC and RMSE on the LIVE 3D phase I, the
LIVE 3D phase II and the NBU 3D IQA database are listed in Table 2.
From Table 2, it can be seen that Chen’s method and Shao’s method
are reasonable good for these three databases. The possible reason
is that ‘‘cyclopean” based (Chen’s method) and sparse representa-
tion based methods (Shao’s method) are highly in line with human
visual perception. For the proposed SIQA method, it has best per-
formances across all these three databases. Since NMF is able to
learn local color visual characteristics and both monocular percep-
tion and binocular interactions are consider, moreover, SVR is used
to simulate the nonlinear relationship between monocular percep-
tion and binocular interactions, the proposed SIQA method can
achieve much higher consistency with human visual perception
than the other SIQA methods.

To further verify the stability of the proposed SIQA method, the
variances of SROCC and PLCC are calculated and listed in Table 3.
From Table 3, it can be concluded that the proposed SIQA method
remains stable between trials.

4.3. Performance on individual distortion types

In this subsection, we comprehensively compare the proposed
SIQA method with the eight SIQA methods to measure a SIQA
method’s ability degraded by specific types of distortion. Values
of PLCC and SROCC are respectively listed in Tables 4 and 5 where
the highest performance have been highlighted in boldface. From
Tables 4 and 5, it can be seen that the proposed SIQA method and
Shao’s method are among the top 9 times in terms of PLCC and
SROCC, followed by FI-VIF (5 times), You’s method (3 times)
and Chen’s method (2 times). A possible explanation is that the
proposed SIQA method based on NMF and Shao’s method based
on sparse coding have impressive consistency with human per-
ception. However, it should be noted that the proposed SIQA
method is very prominent for Gblur distortion because the local-
ized features cannot reflect the changes of image quality for this
distortion.

To further evaluate the predictive performance of the proposed
SIQA method for both symmetrically and asymmetrically distorted
stereoscopic images, we compare the proposed SIQA method with
PMFS metric [27] on LIVE 3D Phase II database. The values of PLCC,
SROCC and RMSE of each distortion types are listed in Table 6.
From Table 6, it can be observed that the proposed SIQA method
shows the highest performance on JPEG, JP2K and FF distortions,
respectively. In addition, the proposed SIQA method is also supe-
rior to the PMFS metric in terms of overall performance. In sum-
mary, the proposed SIQA method is an accurate, monotonic, and
consistent objective SIQA method.

4.4. Influence of the parameter

In this subsection, we discuss the impact of the parameter r
which controlled the number of the feature basis in the feature
detector. Particularly, the parameter r is similar to the number of
activated cells in the RF. Without losing generality, we only con-
duct the performances on the LIVE 3D Phase I database to discuss
the influence of the parameter r selection. In the experiment, we
consider nine values of the parameter:
r 2 f8;10;12;14;16;18;20;22;24g. Performance effects of the
parameter r are shown in Fig. 4. As shown in Fig. 4, the highest



Table 2
Performance of the proposed SIQA method and the other eight methods in terms of SROCC, PLCC and RMSE on the three databases (cases in bold denote best performance).

FI-PSNR FI-SSIM FI-VIF Bensalma and Larabi [31] Benoit et al. [15] You et al. [23] Chen et al. [25] Shao et al. [32] Proposed

LIVE I SROCC 0.8599 0.8606 0.9188 0.8747 0.8901 0.9247 0.9157 0.9251 0.9336
PLCC 0.8645 0.8699 0.9222 0.8874 0.8899 0.9303 0.9167 0.9350 0.9459
RMSE 8.2424 8.0874 6.3423 7.5585 7.4786 6.0161 6.5503 5.8155 5.2763

LIVE II SROCC 0.6375 0.6795 0.7213 0.7513 0.7475 0.7206 0.9013 0.8494 0.9030
PLCC 0.6584 0.6844 0.7234 0.7699 0.7642 0.7744 0.9065 0.8628 0.9162
RMSE 8.4956 8.2295 7.7936 7.2035 7.2806 7.1413 4.7663 5.7058 4.5233

NBU SROCC 0.8889 0.9093 0.8463 0.9381 0.8812 0.7324 0.9093 0.9411 0.9206
PLCC 0.9077 0.9143 0.8455 0.9367 0.8760 0.7346 0.9083 0.9413 0.9330
RMSE 7.2081 6.9565 9.1739 6.0172 8.2864 11.6556 7.1852 5.7999 6.3630

Average SROCC 0.7954 0.8164 0.8288 0.8547 0.8396 0.7925 0.9087 0.9052 0.9190
PLCC 0.8102 0.8228 0.830367 0.8646 0.8433 0.8131 0.9105 0.9130 0.9317
RMSE 7.9820 7.7578 7.769933 6.9264 7.6818 8.2710 6.1672 5.7737 5.3875

Table 3
Stability of trained model in the LIVE 3D Phase I, the LIVE 3D Phase II and NBU 3D IQA
database.

Variance (SROCC) Variance (PLCC)

The LIVE 3D Phase I 0.0144 0.0115
The LIVE 3D Phase II 0.0233 0.0188
NBU 0.0182 0.0186
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value of PLCC and SROCC is obtained when the parameter r equals
to 16. As can be seen from the figure, the curves are monotonically
increasing and decreasing monotonically before and after the
Table 4
Performance comparison of nine metrics on each distortion types in terms of PLCC.

Criteria FI-PSNR FI-SSIM FI-VIF Bensalma and Larabi [31] Ben

LIVE I JPEG 0.2866 0.2741 0.6545 0.3803 0.57
JP2K 0.8381 0.8210 0.9421 0.8389 0.88
WN 0.9280 0.9250 0.9310 0.9147 0.93
Gblur 0.9475 0.9080 0.9573 0.9369 0.92
FF 0.7086 0.7297 0.7572 0.7339 0.74

LIVE II JPEG 0.6124 0.5486 0.8906 0.8577 0.53
JP2K 0.7457 0.7191 0.9164 0.6667 0.64
WN 0.9150 0.9139 0.8981 0.9436 0.86
Gblur 0.7083 0.7250 0.8993 0.9077 0.88
FF 0.7025 0.7342 0.7574 0.9097 0.84

NBU JPEG 0.9433 0.9420 0.9467 0.8950 0.88
JP2K 0.9420 0.9441 0.9259 0.9510 0.89
WN 0.9158 0.9320 0.9551 0.9333 0.93
Gblur 0.9596 0.9578 0.9696 0.9596 0.93
H. 264 0.9640 0.9665 0.9672 0.9547 0.83

Table 5
Performance comparison of nine metrics on each distortion types in terms of SROCC.

Criteria FI-PSNR FI-SSIM FI-VIF Bensalma and Larabi [31] Ben

LIVE I JPEG 0.2070 0.2047 0.6002 0.3283 0.49
JP2K 0.8388 0.8222 0.9125 0.8170 0.87
WN 0.9284 0.9282 0.9335 0.9055 0.93
Gblur 0.9345 0.8788 0.9329 0.9157 0.88
FF 0.6581 0.6866 0.7497 0.6500 0.62

LIVE II JPEG 0.6129 0.5641 0.8768 0.8461 0.50
JP2K 0.7193 0.7003 0.9212 0.8038 0.63
WN 0.9073 0.9091 0.9341 0.9386 0.85
Gblur 0.7112 0.7387 0.8868 0.8838 0.85
FF 0.7012 0.7350 0.7586 0.8743 0.83

NBU JPEG 0.9390 0.9456 0.9514 0.9148 0.88
JP2K 0.9469 0.9439 0.9282 0.9508 0.89
WN 0.8604 0.9163 0.9233 0.9157 0.92
Gblur 0.9526 0.9692 0.9737 0.9560 0.93
H. 264 0.9555 0.9536 0.9513 0.9379 0.84
parameter r equals to 16 fore both PLCC and SROCC. Therefore,
we set r ¼ 16 in the proposed SIQA method.

4.5. Contributions of each part in the proposed SIQA method

Three quality scores fScoreLNMF ; Score
R
NMF ; ScoreCg used in the pro-

posed SIQA method is composed of two parts: visual quality of
monocular perception (ScoreLNMF and ScoreRNMF) and visual quality
of binocular interactions (ScoreC). It is necessary to explore how
the final perceived quality is impacted by each part in the proposed
SIQA method. Therefore, we designed three different methods for
performance comparison, denoted by method-A (ScoreLNMF and
oit et al. [15] You et al. [23] Chen et al. [25] Shao et al. [32] Proposed

66 0.6333 0.6344 0.5200 0.7074
59 0.9410 0.9164 0.9213 0.9412
54 0.9351 0.9436 0.9448 0.9503
17 0.9545 0.9417 0.9592 0.9681
77 0.8589 0.7580 0.8594 0.8677

28 0.6741 0.8422 0.7472 0.9242
67 0.7320 0.8426 0.7823 0.9419
10 0.5464 0.9602 0.9464 0.9174
14 0.9763 0.9650 0.9580 0.9204
72 0.8561 0.9097 0.9046 0.9194

35 0.7266 0.9011 0.9279 0.9200
00 0.6811 0.9102 0.9529 0.9339
86 0.8770 0.9498 0.9626 0.9532
24 0.8258 0.9528 0.9808 0.9513
85 0.7044 0.9337 0.9619 0.9355

oit et al. [15] You et al. [23] Chen et al. [25] Shao et al. [32] Proposed

83 0.6008 0.5582 0.4951 0.6092
30 0.9051 0.8956 0.8945 0.8842
69 0.9403 0.9481 0.9405 0.9246
02 0.9300 0.9261 0.9403 0.9221
42 0.8030 0.6879 0.7963 0.7957

78 0.5229 0.8396 0.7330 0.8888
25 0.7309 0.8334 0.7845 0.9093
69 0.4820 0.9554 0.9651 0.8725
45 0.9227 0.9096 0.9204 0.8645
19 0.8392 0.8890 0.8905 0.8865

89 0.7606 0.9133 0.9346 0.9167
51 0.6754 0.9145 0.9516 0.9231
78 0.8341 0.9149 0.9453F 0.9355
04 0.8175 0.9473 0.9769 0.9361
02 0.6685 0.9040 0.9553 0.9253
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ScoreRNMF are used with SVR procedure), method-B (only ScoreC is
used) and method-C (the proposed SIQA method), respectively.
Table 7 shows the comparison results of these three methods.
From Table 7, it is easy to see that the best result is obtained when
both monocular perception and binocular interactions are
considered.

4.6. Performance impact of the training database

Since feature vectors in the proposed SIQA method are
extracted by using the feature detector from a selected training
Table 6
Performance comparison of the metrics on LIVE 3D Phase II database (the case in bold: th

JPEG JP2K

PMFS[27] PLCC 0.829 0.806
SROCC 0.805 0.788
RMSE 4.112 5.815

Proposed PLCC 0.924 0.942
SROCC 0.889 0.909
RMSE 3.518 4.021

Fig. 4. Performance influence of the parameter r on the LIVE 3D Phase I databa

Table 7
Comparison of SROCC, PLCC and RMSE for different schemes (the case in bold: the best pe

Method-A

LIVE I SROCC 0.9278
PLCC 0.9378
RMSE 5.5864

LIVE II SROCC 0.8631
PLCC 0.8706
RMSE 5.5538

NBU SROCC 0.8992
PLCC 0.9057
RMSE 7.1495

(a)Training da

(b)Training da

Fig. 5. Two different training databases. (a) Training database 1 randomly selected from
MIQA database.
database, it is necessary to discuss whether the performance
depends on a training database. To test robustness of the proposed
SIQA method, we construct two different training databases ran-
domly selected from the IVC MIQA database [46] and the
Toyama-MICT (TOY) MIQA database [47], respectively (denoted
as training database 1 and training database 2 in Fig. 5) and com-
pare the evaluation performance using these training databases to
learn the feature detector D. Table 8 shows SROCC, PLCC and RMSE
results with different training databases. From Table 8, we can see
that, no matter which training database is used, the difference in
the results is small. This means that the evaluation performance
e best performance).

WN Gblur FF ALL

0.958 0.971 0.912 0.902
0.945 0.909 0.886 0.892
3.267 3.290 4.693 4.894

0.917 0.920 0.919 0.916
0.873 0.865 0.887 0.903
4.184 3.768 4.681 4.523

se. (a) Values of PLCC influenced by r. (b) Values of SROCC influenced by r.

rformance).

Method-B Method-C

0.9180 0.9336
0.9276 0.9459
6.1242 5.2763

0.8282 0.9030
0.8386 0.9162
6.1483 4.5233

0.9072 0.9206
0.9188 0.9330
6.9413 6.3630

tabase 1 

tabase 2

the IVC MIQA database. (b) Training database 2 randomly selected from the TOY



Table 8
Comparison of SROCC, PLCC and RMSE for two training databases (the case in bold: the best performance).

Training database 1 Training database 2 Proposed database

LIVE I SROCC 0.9247 0.9261 0.9336
PLCC 0.9382 0.9387 0.9459
RMSE 5.5876 5.5792 5.2763

LIVE II SROCC 0.8940 0.8902 0.9030
PLCC 0.9070 0.9038 0.9162
RMSE 4.6823 4.7997 4.5233

NBU SROCC 0.9058 0.9082 0.9206
PLCC 0.9245 0.9236 0.9330
RMSE 6.4556 6.5183 6.3630
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of the proposed SIQA method is usually stable on different data-
bases and has robustness in terms of the change of the training
database.
5. Conclusions

In this work, we propose a novel method for objective stereo-
scopic image quality assessment (SIQA) by learning non-negative
matrix factorization (NMF)-based color visual characteristics and
considering binocular interactions. Since the NMF method can
reflect parts-based perception of the human visual system, the
NMF method is first used to learn a feature detector by considering
color information from the training images. Then, in construction
of SIQA phase, visual attention is considered and the feature detec-
tor is used to extract localized color visual features for monocular
perception. After obtain the quality scores of the left and right
views, the cyclopean is considered for binocular interactions. The
gain control model and the DOG responses of the left and right
views are used to form the cyclopean image. Furthermore, quality
score of the distorted cyclopean image is calculated. Finally, non-
linear pooling method is used to reflect nonlinear relationship
between monocular perception and binocular integration, and
the final quality score is obtained by integrating three quality
scores. In the future, we will extend the proposed SIQA method
to measure the quality of stereoscopic video sequences.
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