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Abstract— Object quality assessment for compressed video is
critical to various video compression systems that are essential
in the video delivery and storage. Although mean squared
error (MSE) is computationally simple, it may not be accurate
to reflect the perceptual quality of compressed videos, which are
also affected dramatically by the characteristics of the human
visual system (HVS), such as contrast sensitivity, visual attention,
and masking effect. In this paper, a video quality metric is
proposed based on perceptually weighted MSE. A low-pass filter
is designed to model the contrast sensitivity of the HVS with the
consideration of visual attention. The imperceptible distortion
is adaptively removed in the salient and nonsalient regions. To
quantitatively measure the masking effect, the randomness of
video content is proposed in both the spatial and temporal
domains. Since the masking effect highly depends on the regular-
ity of structure and motion in the spatial and temporal directions,
the video signal is modeled as a linear dynamic system, and the
prediction error of future frames from previous frames is used as
randomness to measure the significance of masking. The relation
is investigated between MSE and perceptual quality scores across
various contents, and a masking modulation model is proposed
to compensate the impact of the masking effect on the MSE.
The performance of the proposed quality metric is validated on
three video databases with various compression distortions. The
experimental results demonstrate that the proposed algorithm
outperforms other benchmark quality metrics.

Index Terms— Human visual system (HVS), low-pass filter,
masking effect, video quality assessment, visual attention.
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I. INTRODUCTION

W ITH the development of video technologies, video has
become one of the most important electronic media in

our daily lives. Original videos take a very large space and
need to be compressed before transmission or storage, but the
compression might degrade the video quality. Since humans
are the final receivers of videos, in the sense of quality of
experience, it is highly desired to precisely predict a human’s
perception on compressed videos. Due to the large time and
human resource consumption of the subjective video quality
assessment, great efforts have been dedicated to developing
various objective video quality metrics.

A number of video quality metrics have been designed to
simulate the characteristics of the human visual system (HVS).
Contrast sensitivity is one of the most important properties
of the HVS, which varies to different spatial and temporal
frequencies, and has been psychophysically studied and mod-
eled in the contrast sensitivity function (CSF) [1]–[7]. Video
quality metrics employ the CSF to analyze the visibility of
impairs [8], [9]. In [8], the video is preprocessed with sep-
arable filters in the temporal and spatial domains. A low-
pass and a bandpass filter are used for temporal filtering,
whereas spatial filtering is implemented in the discrete wavelet
transform (DWT) domain. However, as stated in [3] and [10],
separate processing temporal and spatial frequency is not
possible. In [9], distortion is decoupled into detail losses
and additive impairments with DWT, and the sensitivity of
the distortion is analyzed through a comprehensive spatial–
temporal CSF, and the weighting factors are calculated to
adjust the distortion according to the sensitivity at different
DWT frequencies. In these CSF models, the contrast sensitiv-
ity is modeled only as a function of frequency, without taking
the visual attention into consideration.

Actually, the contrast sensitivity is not uniformly distributed
over the video content. Instead, it peaks at the gazed region and
decreases away from it. While static images might give view-
ers enough time to watch the details in different regions, videos
release tremendous information within a very short time,
which makes the HVS unable to receive all of it. Therefore,
visual attention plays an important role in quality assessment
and has been a concern in recent studies [11]–[15]. In [11],
the difference of wavelet coefficients between an undistorted
image and its distorted version is weighted with the foveation
error sensitivity, according to the visual attention. In [12],
a video presentation is transferred from its original Carte-
sian coordinate to the curvilinear coordinate by a foveation
filtering operation and then the distortion is calculated with
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weighted signal-to-noise ratio. In [13], various quality metrics
are modified by weighing the original metrics with a saliency
map derived from the eye-tracking data of visual attention, and
improvements in performance were observed compared with
the metrics without visual attention. An overview of applying
visual attention in quality assessment is given in [14]. In these
methods, it simply gives greater weights to the distortion in
the attended areas at the pooling stage, and the weight is
usually designed intuitively. Therefore, it is difficult to justify
and develop a proper and accurate weighting scheme that can
work the same way as the HVS in balancing the attended
and unattended distortions. In [15], in addition to spatial and
temporal CSF properties, visual attention is considered when
the critical frequency is modeled. Then the critical frequency
is integrated with the wavelet-based distortion visibility model.

Another important characteristic to consider in video quality
is the masking effect, which refers to a human’s reduced ability
to detect a stimulus on a spatially or temporally complex
background. The traditional way to measure the masking
effect is by using a divisive gain control method, which
decomposes the video into multiple channels and analyzes
the masking effect among the channels by divisive gain
normalization [16], [17]. However, the mechanism of gain
control mostly remains unknown. In addition, since only a
simple masker, such as sinusoidal gratings or white noise, is
used in the experiments to search for optimal parameters to
fit the gain control model, there is no guarantee that these
models are applicable to natural images [18]. In [19] and [20],
it is pointed out that the masking effect highly depends on
the level of randomness created by the background. Usually
the regular background contains predictable content and the
stimulus will become distinct from the neighborhood when
it is different from a human’s expectation of its position. In
the random background, the content is unpredictable, and thus
any change on it will be less noticed. Therefore, there is
higher masking in the random background than the regular
background. In [19], the concept of entropy masking is pro-
posed to measure the masking effect of the background using
zero order entropy. However, it measures masking only in
the spatial domain for videos, which is obviously inadequate,
because the temporal activities will also affect the visibility
of distortion significantly. Usually distortion is highly masked
in the massive and random motions, while less masked in
regular and smooth motions. In [21], the mismatch between
two consecutive frames is used to measure temporal activities.
However, it may not reflect the regularity of motion precisely,
since smooth and regular motion can also produce a large
mismatch. Therefore, it is desired to develop the method that
could measure the regularity of motion and thus measure the
masking effect of videos.

On other hand, although the mean squared error (MSE) has
been criticized for the low correlation to the HVS due to its
low computational cost, it is still widely used in practice. The
inaccuracy of the MSE in perceptual quality prediction comes
from the lack of psychophysical designs in HVS, like counting
the imperceptible distortions. In this paper, we revise the
MSE by incorporating important HVS characteristics. First, to
remove the imperceptible distortion from the MSE, a low-pass

filter is designed based on the CSF and visual attention. Since
the contrast sensitivity is affected both by frequency and visual
attention, visual saliency is introduced to adjust the cutoff fre-
quency in the CSF so that the developed low-pass filter could
adaptively remove the imperceptible distortion according to
the location that is attended or not. In this way, the problem of
nonuniform sampling of visual acquisition is solved naturally
by removing less high frequency distortion in salient regions
and more in nonsalient regions. In addition, the masking
modulation is applied afterward to reduce the imperceptible
distortion covered by masking. Because smooth and regular
motions will hide less distortion than massive and irregular
motions, we first propose a method to measure the randomness
of video with a dynamic model. Since video content is easier to
predict with regular motion than random motion, the prediction
error actually reflects the randomness of video and can be used
as the measurement of randomness to indicate how much the
background could mask the noise. Furthermore, we investigate
the model of masking modulation, which quantitatively ana-
lyzes how the modified MSE should be compensated accord-
ing to the proposed randomness. The analysis is performed
based on the relation between the modified MSE and the
perceptual quality scores across different video contents.

The rest of this paper is organized as follows. In Section II,
the foveated low-pass filter is proposed. The masking modu-
lation model is introduced in Section III. In Section IV, the
experimental results are given to compare the performance
of the proposed video quality metric with other benchmarks.
Finally, Section V concludes this paper.

II. FOVEATED LOW-PASS FILTER

The initial visual signal processing in HVS includes two
steps. In the first step, the visual signal goes through the
eyes optics, forming an image on the retina. Because of the
diffraction and other imperfections in the eye, such processing
would blur the passed image. In the second step, the image will
be filtered by neural filters as it is received by photoreceptor
cells on the retina and then passed on to the lateral genicu-
late nucleus and the primary visual cortex. These processes
are more like low-pass filtering and will hide considerable
high-frequency information from perception.

A. Low-Pass Filtering With Spatiotemporal CSF

The CSF, which is defined as the inverse of the con-
trast threshold of detectable contrast at a given frequency,
provides a comprehensive measure of vision. Although it is
not exactly equivalent to the modulation transfer function
(MTF), it reflects the same trend as the modulation gain. For
instance, higher sensitivity at particular frequencies always
means higher modulation gain at the corresponding frequen-
cies and vice versa. Therefore, many researchers have treated
the CSF as MTF, and used it to define characteristics of initial
processing in HVS [22]–[24]. Constrast sensitivity of HVS
peaks at certain spatial and temporal frequency and drops
sharply after that along both spatial and temporal frequencies.
The traditional CSF model from [3] modified in [1] considers
the contrast sensitivity as a function of both the spatial and
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temporal frequencies, which can be expressed as

CSF(ω, vr ) = c0(k1 + k2|log(ε · v/3)|3) · vr · ω2

· exp(−c1 · ω · (ε · vr + 2)/k3) (1)

where ω/2π is the spatial frequency in cycles per degree,
and vr is the retinal image velocity, implicitly denoting the
temporal frequency. k1, k2, and k3 are empirical constants set
as 6.1, 7.3, and 23 in [3]. c0 and c1 are used to control the
magnitude and the bandwidth of a CSF curve. Note that such
a model is developed for near-threshold distortion; to simplify
the problem, we assume it also applies to suprathreshold
distortion.

According to [1] and [25], object velocity jointly with eye
movement determines temporal frequency, i.e., retinal velocity
vr . There are three types of eye movements: smooth-pursuit
eye movement, natural drift eye movement, and saccadic eye
movement. The exact eye movement is affected by the moving
objects and the subject’s ability to track them under some
psychological constraints [26], [27]. In this paper, the eye
movement estimation in [1], [6], and is used to calculate retinal
velocity from object velocity that is measured by optical flow
and viewing distance.

The processed visual signal after passing through the initial
part of HVS can be modeled as

I ′ = F−1(CSF(ω)) ∗ I (2)

where I ′ and I are the processed and original visual signal,
respectively; F−1 is the inverse Fourier transform; and ∗ is
the convolution operation.

B. Foveated Low-Pass Filter

Our gaze is mainly driven to follow the most salient regions,
and the distortions that occur outside the salient areas are
assumed to have a lower impact on the overall quality. This is
because the photoreceptor cells are not equally distributed, but
they are dense in the fovea and sparse on the peripheral retina.
Therefore, the gazed regions on an image have better visual
resolution in the HVS, and consequently it is less blurred,
whereas the regions outside foveation will lose many more
details. Since the contrast sensitivity changes with the location
of the image projected onto the retina, the filter should be
adaptively changed rather than using one that is constant.

In [28], the contrast threshold is modeled based on the
spatial frequency of the visual signal and its retinal eccentricity
to the fixation. Since the contrast sensitivity is the inverse
of the contrast threshold, the corresponding CSF can be
expressed as

CSF(ω, e) = 1

CT0
· exp

(
−μ · ω · e + e2

e2

)
, f > 0 (3)

where ω/2π is the spatial frequency, e is the retinal eccen-
tricity, CT0 is a constant presenting the minimum contrast
threshold, e2 is the half-resolution eccentricity, and μ is the
spatial frequency decay constant. The retinal eccentricity e is
the angle between the fixation and the location of the signal,
and it is related to the distance between the two points and
the viewing distance. Compared with (1), (3) does not consider

the temporal factor and approximate the spatial properties in
a monotonically decreasing curve. However, by modulating
the spatial frequency with retinal eccentricity, it includes the
consideration of unequal distribution of sensitivity over the
whole retina.

To develop a comprehensive CSF that considers both
spatiotemporal frequencies and the foveated vision mecha-
nism, the temporal factor model in (1) is integrated into (3),
and the foveated CSF is developed as

CSF(ω, vr , e) = c0(k1 + k2|log(ε · vr/3)|3) · vr

· exp(−c1 · ω · (e+ e2)/e2 · (ε · vr + 2)/k3).

(4)

In this model, contrast sensitivity monotonically decreases
with spatial frequencies. Note that as the luminance of videos
change over time, our visual function, such as the pupil, will
adapt to accommodate these changes [29]–[32]. Since the
video clips in our experiments are only 10 s or less than 10 s, to
simplify the problem, we assume that the luminances of videos
are maintained over the whole sequence. By transforming the
CSF in (4) into the spatial domain as proved in the Appendix,
we have the impulse response of the initial processing system
in the HVS as

h(dF , e, vr ) = 1

π
· a · b

a2 + d2
F

(5)

where a and b relate to retinal velocity and retinal eccentricity,
b = c0(k1 + k2|log(ε · vr/3)|3) · vr and a = c1 · (e + e2)/e2 ·
(ε · vr + 2)/k3; dF is the distance from the filter center, i.e.,

dF = (x2 + y2)
1/2

. Since the parameters a and b are changing
with the retinal velocity and retinal eccentricity, the filter in (5)
becomes adaptive to their factors.

C. Computational Model of Eccentricity

Since the visual acuity varies on the different location of
a video, the accurate prediction of visual attention is critical.
Recording eye movements is so far the most reliable means for
studying human visual attention, and it provides the ground
truth of the fixation locations on videos. It is highly desirable
to incorporate this information into the developed foveated
low-pass filter. However, recording such data requires extra
equipment like eye-tracking devices, and the experiments
are expensive and time consuming. More importantly, since
humans are involved in the process, it is impossible to
develop it into objective quality metrics whereby each
component should be automatic. An alternative way is using
saliency detection algorithms. In general, saliency is defined
as what attracts human perceptual attention. Computational
visual attention models trying to predict the gaze location of
humans with features from images or videos can be generally
classified into two categories: a bottom-up approach [33]–[37]
and a top-down approach [38]. The actual mechanisms of
visual attention are much more complicated and involve many
factors. Usually top-down approaches use both the low-level
and high-level features. For example, high-level features
can be faces, people, and text, whereas low-level features
could be color, edge, etc. Top-down approaches highlight the
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importance of high-level and semantic features, but they may
not be general enough to include all situations; for example,
they often fail to detect salient objects for which they have
not been trained. As stated in [39], both stimulus features
and task demands affect visual attention. However, videos in
our problem are used for general purpose and not for specific
tasks. Thus, without clear task demands, the high-level
features may not be helpful in detecting saliency. In addition,
bottom-up approaches usually consume less time than top-
down. We adopt [34] in this paper to estimate saliency map.

The saliency map quantifies the possibility of the locations
being the gazed. A location with a large value in the saliency
map is more likely to be gazed, and hence the eccentricity
of that location projected on the retina will be small, and
vice versa. Therefore, the retinal eccentricity of a location
increases as its visual saliency value decreases. In [13], the
saliency value is assumed to be Gaussian distributed around
the fixation as s = exp(−d2

E/σ 2), where dE is the distance
from fixation, and σ is the model parameter. Since our saliency
map is generated by computational saliency models and the
actual distribution depends on the employed computational
saliency models, instead of using Gaussian distribution, we
apply a more general distribution as

s = exp

(
−dθ

E

σ 2

)
(6)

where θ is the model parameter depending on different
saliency detection algorithms, and in our experiments, θ = 4.
The location with the maximum saliency value is assumed to
be the gaze location and based on (6), it is straightforward
to use the visual saliency value to approximate the retinal
eccentricity as

e(i, j) = arctan
(−σ 2ln(s(i, j)))ϑ

L
≈ γ · ln(1/s(i, j))ϑ (7)

where s(i, j) is the visual saliency value at position (i, j) and
L is the viewing distance. γ = σ 2ϑ/L, ϑ = 1/θ . The values
of s(i, j) within each frame are normalized into the range
of [0, 1].

D. Blockwise Filtering

Since the contrast sensitivity is different in positions, the
low-pass filtering that simulates the initial processing of the
HVS can be applied with adaptive filters based on (3) and (7).
For the constant filters, it is equivalent to apply filtering
in the frequency domain or spatial domain. However, since
the proposed low-pass filter changes spatially, the spatial
information will be lost in the Fourier frequency domain; it
can be implemented only in the spatial domain as

	I f = h(e, vr ) ∗ (Id − Io) = h(e, vr ) ∗ 	I (8)

where Id and Io are distorted and original frames, respectively.
h(e, vr ) is the low-pass filter in (5). Equation (8) is compu-
tationally heavy, since for each pixel we have to generate
a new filter according to the corresponding saliency values
and retinal velocities. Usually the saliency map is continuous

and smooth, and thus we can assume that the saliency value
within a neighborhood is similar. Low-pass filtering can be
processed block by block with block size N × N and a
larger N can reduce the computational complexity but with
coarser eccentricity estimation, while a smaller N can provide
finer estimation but with higher computational cost. In our
experiments, block size is set to 32 × 32 for a good bal-
ance between accuracy and computational complexity. For the
kth block Bk , the average eccentricity of the block

ēk = 1

N2

N∑
(m,n)∈Bk

e(m, n) (9)

is used to present to visual attention. Similarly, the average
retinal velocity of the block is used for the entire block as

v̄rk = 1

N2

N∑
(m,n)∈Bk

vr (m, n) (10)

where vr (m, n) can be estimated by optical flow and viewing
distance. Thus, a constant filter is applied within a block as

	I f (i, j) = h(ēk, v̄rk) ∗ 	I (i, j) (11)

where (i, j) ∈ Bk .
The visual illustration of foveated low-pass filtering is

shown in Fig. 1. We can see that in Fig. 1(b), the high
frequency signals are equally removed across the content,
even in the regions that we are interested in. However, in
Fig. 1(d), they are removed adaptively according to the
saliency map shown in Fig. 1(c), and high frequencies remain
in the salient regions.

After the adaptive low-pass filtering, MSE f is calculated as
the mean of the sum of the squared difference between the
original and compressed video sequences as

MSEf = 1

W H L

L∑
t=1

W H∑
i=1, j=1

	I ′
f (i, j, t)2 (12)

D = ln(MSEf) (13)

where W , H , and L are the width, height, and duration of
the video sequences. Here MSE is analyzed in logarithmic
scale as presented in (13) because in the logarithmic scale,
the difference of quality curves among different contents is
more obvious and clearer than in the linear scale.

III. PERCEPTUAL MODULATION

The visibility of distortion highly depends on the content
of the background. Usually a strong masking effect can
prevent the distortion from being observed and thus reduce the
distortion perceptually. Therefore, it is important to measure
the masking effect. In [19], it is pointed out that the masking
effect highly depends on the level of randomness created by
the background. For videos, randomness should be measured
in both spatial and temporal domains.

A. Displacement of Metric Curves

The relationship between the mean opinion score (MOS)
and D in (13) is shown in Fig. 2 for various sequences from
different databases. Each point corresponds to a distorted video
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Fig. 1. Visual illustration of foveated low-pass filtering. (a) Original image. (b) Filtered with constant low-pass filter. (c) Saliency map. (d) Filtered with
foveated low-pass filter.

Fig. 2. Relation of MOS and ln(MSEf ) for different video sequences. (a) On the MCLV database [49]. (b) On the VQEG database [50].

sequence, and metric curves are formed by connecting the
points that share the same original video. In other words,
the connected points in Fig. 2 are video sequences com-
pressed from the same original sequence but with different
compression levels. Under the same video content, D is a
good predictor of perceptual quality (i.e., MOS), since the
MOS monotonically decreases with D.

However, such a relation cannot be applied to distorted
videos with different contents. As we can observe in Fig. 2,

there are different horizontal displacements for the metric
curves of different video contents. Such a difference in hori-
zontal displacement mainly comes from the different masking
effect of various video contents. Given the same MOS, the
points of metric curves on the right side have more actual
distortion, i.e., MSEf , than on left, as shown in Fig. 2, which
means the video in the right metric curve has more masking,
which produces the same perceptual quality as the videos on
the left side. Therefore, the videos with a strong masking effect
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TABLE I

SLOPES AND GOODNESS OF FITTING

are more likely to have metric curves on the right side, and
the displacement of these curves with respect to the left side
reflects the significance of the masking effect.

To quantitatively analyze the masking effect, we assume that
the shapes of the curves in Fig. 2 are identical by neglecting the
small differences among them. The points of the same contents
are fitted with linear curves, and the slopes of different curves
are presented in Table I as well as the goodness of fit R2.
We can see that within each database, the slopes of most video
sequences are close to each other, which means that the shapes
of these curves are almost the same. R2 describes how well
the linear model fits to the actual data and the closer to 1 its
value is, the better the mode is. Although the values of R2

in Table I are all so close to 1, which means that the linear
model is accurate, it is not necessary to limit the model to
linear. Instead, as long as the shape of these curves are the
same, we can generalize the relation of D and MOS as

̂MOS = F(D − P) (14)

where P is the horizontal displacement depending on the video
content, and F(·) can be a linear function or other monotonic
decreasing function representing the shape of these curves.
P reflects the masking effect of the video content. A strong
masking effect always results in large P values. Since F(·)
is fixed in (14), an accurate estimation of P is critical to the
MOS prediction. Due to the difference of the masking effect,
P varies significantly from sequence to sequence.

B. Temporal and Spatial Randomness

To measure the masking effect of video content, the reg-
ularity of video content is analyzed quantitatively in both
spatial and temporal domains. As an important characteristic
of the video, motion information is highly related to masking
activities. Usually distortion is highly masked in the massive
and random motions, while less masked in regular and smooth
motions.

For regular motion, the future frames can be predicted
from the past frames by learning the temporal behavior of a
short video clip in the past. Thus, the prediction error reflects
the randomness of motion. To capture the temporal activities
of the past video, the video sequence can be modeled as a
discrete-time dynamic system [40]. To simplify the problem,
the video signal is modeled as a linear dynamic system as in
[41]. Let Y l

k = [y(k), . . . , y(l)] ∈ R

m×(l−k) denote a short
sequence from the kth frame to the lth frame, and each frame
is rearranged into a column vector y ∈ R

m , where m equals

the number of pixels within a frame, i.e., m = W × H . The
motion in the video is simulated as the evolution process of a
dynamic system, described as{

Y l
k = C Xl

k + Wl
k

Xl
k = AXl−1

k−1 + V l
k

(15)

where Xl
k = [x(k), . . . , x(l)] and Xl−1

k−1 = [x(k − 1), . . . ,

x(l − 1)] ∈ R

n×(l−k) are the state sequences of Y l
k and

Y l−1
k−1, respectively, and m > n. A ∈ R

n×n is the state
transition matrix that encodes the regular motion information,
and V l

k ∈ R

n×(l−k) is the sequence of motion noise that cannot
be represented by the regular information A. C ∈ R

m×n is
the observation matrix encoding the shapes of objects within
the frames, and V l

k ∈ R

n×(l−k) is the sequence of observation
noise that cannot be represented by the regular shape informa-
tion C . Given the video sequence Y l

k , the model parameters
A, C and the state sequence Xl

k are not unique. There are
infinite choices of these matrices that can give exactly the
same video sequence Y l

k . An efficient method was proposed
in [42], which employs a singular value decomposition and
keeps the n largest singular values as

Y l
k = U
V T + Wl

k (16)

where 
 = diag[σ1, . . . , σn] contains the n largest singular
values and U ∈ R

m×n , V ∈ R

(l−k)×n are corresponding
decomposition vectors. By setting Xl

k = 
V T and C(l) = U ,
we can determine the state sequence and the model parameter
C . Since the redundancy in Y l

k is removed by reducing the

dimension from m to n, Xl
k is the compact representation of

Y l
k with a loss of information Wl

k .
Moreover, A is expected to capture the motion information

and thus predict future frames. The optimal A can be found
by minimizing the squared prediction error as

Â(l) = argmin
A

∣∣∣∣Xl
k+1 − AXl−1

k

∣∣∣∣. (17)

Therefore, the optimal solution can be obtained as

Â(l) = Xl
k+1 Xl−1

k
+

(18)

where Xl−1
k

+
is the pseudoinverse of Xl−1

k . We can predict the
future frame y(l +1) based on the obtained model parameters,
i.e., A(l), C(l) that characterize the temporal activities of
sequence Y l

k . The prediction error can be calculated as

RT (l + 1) = |y(l + 1) − C(l)A(l)x(l)| (19)

where RT (l + 1) ∈ R

m is the noise that can not be predicted
with regular information. This value reveals the predictability
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Fig. 3. Visual illustration of temporal randomness on two different video sequences. (a)-(d) Consecutive frames of the sequence ElFuente2. (e) Temporal
randomness for the sequence ElFuente2. (f)-(i) Consecutive frames of the sequence OldTownCross. (j) Temporal randomness for the sequence OldTownCross.

Fig. 4. (a) Relation between horizontal displacement P and temporal randomness and spatial complexity. (b) Combined temporal and spatial randomness.

of the next frame according to the trajectory of moving objects
in the past frames and thus reflect its temporal randomness.
Usually smooth and regular motions in videos will make future
frames more predictable than massive and random motions.
Fig. 3 shows the temporal randomness for two sequences.
Fig. 3(a)–(d) and (f)–(i) shows the frames of the sequence
ElFuente2 and OldTownCross, respectively, and Fig. 3(e) and
(j) shows the corresponding temporal randomness calculated
from (19). In the background of the sequence ElFuente2, the
motion of water drops is unpredictable, and thus its temporal
randomness is large. While in the sequence OldTownCross,
the motion is smooth and regular. Consequently, its temporal
randomness is much smaller than that of the sequence
ElFuente2. Finally, the average temporal randomness is used to
represent the overall temporal randomness of the whole video
as

R̄T = 1

m · L

L∑
l=1

m∑
i=1

Ri
T (l) (20)

where Ri
T (l) ∈ R

m is the i th component of RT (l), and L is the
total number of frames. The number of previous frames (k −l)
will affect the prediction error. For smooth motion, usually
larger number of previous frames will result in a smaller
prediction error, and for nonlinear motion (in higher order),
a smaller number will give a lower prediction error. In this
approach, we assume that humans use a fixed duration of their
past experience to predict future movement. In our experiment,

we set t to 1 s, and in case the frame rate is 30 frames/s, the
number of frames to predict the future frame is 30.

Besides the temporal domain, the spatial activities of the
frame also affect the masking effect. The pixel variance
of N × N block is computed to indicate the local spatial
randomness, and the logarithm of the mean of the local spatial
randomness is utilized as spatial randomness of the whole
video as

R̄S = ln

(
1

M · L

L∑
t=1

B∑
i=1

σ 2(i, t)

)
(21)

where σ 2(i) is the variance of the i th N × N block in the
t th frame; B and L are the total number of blocks within a
frame and total number of frame within a sequence.

C. Modulation

As discussed, the displacement of metric curves in (14)
reflects the masking effect, and it relates to the temporal and
spatial activities of the video sequences. To investigate its rela-
tion to temporal randomness R̄T and spatial randomness R̄S ,
we have to measure the actual horizontal displacement first.
The displacement can be determined by measuring the hor-
izontal position of the crossing points of the metric curves
with any horizontal lines such as MOS = 3.0. The relation
of the actual displacement P with the temporal randomness
R̄T and the spatial randomness R̄S is shown in Fig. 4. In
Fig. 4(a), each point represents a video sequence from either
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the database MCLV or the database VQEG, we can see
that the displacement has a linear relation with R̄T and R̄S ,
respectively. Thus, it could be approximated with a linear
surface, and the displacement can be predicted as

P̂i = α R̄T + β R̄S (22)

where α and β are model parameters and fixed at
0.315 and 0.372, respectively. Fig. 4(b) shows the relation
between the actual and the predicted displacement. Combining
the (13), (14), and (22), we have

̂MOS = F(ln(MSE f ) − α R̄T − β R̄S)

= G(MSE f · e−(α R̄T +β R̄S)) (23)

where G(·) = F(ln(·)). It is acceptable for a quality metric
to predict MOS through a nonlinear mapping, because the
mapping is easy to be found, and it depends on various envi-
ronmental factors, such as the range of MOS and evaluation
methodology. Therefore, in [43] and [44], a nonlinear mapping
is not considered as part of VQM, rather it is left to the final
stage of the performance evaluation. G(·) can be obtained by
fitting the objective prediction scores to the subjective quality
scores, as described in [43] and [44]. We use the perceptually
weighted distortion

MD = MSEf · e−(α R̄T +β R̄S ) (24)

as the MOS predictor. In this way, the MSE is modified
according to the HVS characteristics and thus become more
correlated with the perceptual quality.

D. Context Effect

The MOS of a video is not only determined mainly by
its perceptual quality but it is also affected by the perceptual
quality of other videos during subjective tests. For example,
when a video with medium quality is evaluated in a pool of
severely impaired videos, it will get a higher MOS than when it
is evaluated in a pool of high quality videos. Such phenomenon
is called context effect. Although various subjective tests are
designed carefully to reduce such an effect, it cannot be
removed completely in subjective tests [45], [46]. Usually the
quality of former displayed videos will affect MOS of latter
videos, but since the display order of the videos are random for
each subject, it is reasonable to assume that each video has an
equal chance to be affected by other videos in subjective tests.
Assuming that the MOS of a video would be equally affected
by other videos, a slight shift in MOS might be caused with the
general perceptual quality of the context, which is expressed as

MOS = Q − η · Q̄ (25)

where Q̄ is the average perceptual quality of all videos
displayed in subjective tests, and η is a penalty coefficient
reflecting how much other videos would affect the quality of
the current video. For example, η = 0 means that MOS is not
affected by the quality of other videos. So far, such a shift in
MOS does not affect the performance evaluation of the quality
assessment.

However, in the actual subjective test, the MOS of a
particular video may receive a different impact from dif-
ferent videos. The MOS of a video is more likely to be

affected by videos with similar contents and distortion types.
In other words, when the subjects provide quality scores,
they intend to compare the quality of the current video with
previous similar videos with similar distortion types. The
resultant quality score will be affected by these videos more
than others. In this paper, we focus on the same distortion
types, i.e., compression distortion, and thus only the content
is considered. To measure the similarity of videos, besides the
temporal randomness in (19) and spatial randomness measured
in (21), the color information is also extracted because color
plays an important role in quality assessment, as described in
[47] and [48]. Therefore, the color feature for each frame is
extracted as

cv = det

⎛
⎜⎝

σ 2
Y σ 2

Y U σ 2
Y V

σ 2
Y U σ 2

U σ 2
U V

σ 2
Y V σ 2

U V σ 2
V

⎞
⎟⎠ (26)

where σ 2
Y , σ 2

U , and σ 2
V are the variance of Y , U , and V

components in the YCbCr color space, respectively; σ 2
Y U , σ 2

Y V ,
and σ 2

U V are the covariances of three components, respectively.
The mean value c̄v along the temporal domain is used for each
sequence. Therefore, we measure the distance between the
i th and the j th videos in the feature space as

d(i, j) = κ1|c̄v i − c̄v j |
c̄v i + c̄v j

+ κ2|R̄T i − R̄T j |
R̄T i + R̄T j

+ κ3|R̄Si − R̄S j |
R̄Si + R̄S j

(27)

where κ1–κ3 are constant model parameters indicating the
importance of the features, and they are set to 1 in our
experiments. The videos with smaller distance d(i, j) will
affect the MOS of each other more than the videos with larger
distance.

To simulate the impact of other video quality on the
MOS while taking the content distance into consideration, we
modify the quality metric in (24) and propose the perceptually
weighted MSE as

PW-MSE(i) = MD(i) − η

⎛
⎝ 1

	i

∑
j∈V , j �=i

e−d(i, j ) · MD( j)

⎞
⎠
(28)

where e−d(i, j ) is the weighting factor, and 	i =∑
j∈V , j �=i e−d(i, j ) is used for normalization; V is the set of

videos in context, and η = 1. If the content similarity among
videos is identical, (28) becomes (25), and the context effect
vanishes in terms of quality prediction, because a constant
added to the metric will not affect the final performance.

IV. EXPERIMENTAL RESULTS

A. Subjective Databases and Performance Metrics

The performance of the proposed video quality matric was
evaluated in the three databases, including the MCLV [49], the
VQEG [50], and the IRCCyN databases [51]. In the MCLV,
there are 12 original video sequences with the resolution
of 1920 × 1080. Two types of compression distortion are
involved in the MCLV database. In the first type of distortion,
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TABLE II

INTERMEDIATE PERFORMANCE AT EACH STAGE

the original sequences are compressed with H.264/AVC codec,
generating four different quality levels. In the second type
of distortion, the original sequences are first downscaled and
compressed with H.264/AVC codec at four quality levels.
Then, the compressed sequences are upscaled to the original
resolution. A total of 96 distorted video sequences is in
the MCLV database. In the VQEG database, the original
sequences are from the VQEGHD 3 of the VQEG project,
and there are nine original sequences with the resolution
of 1920 × 1080. In the database VQEGHD 3, besides the
compression distortion types, there are several other distortion
types such as transmission error. Since we are interested
in only compression distortion, only six distorted sequences
with compression distortion were selected for each original
sequence. There is a total of 54 distorted video sequences.
In the IRCCyN database, there are sixty original sequences
with the resolution of 640 × 480. The videos are encoded
with H.264/AVC and the codec of scalable video coding
(H.264/SVC). Each original video is encoded at four different
quality levels. Thus, there is a total of 240 distorted videos.

Since some performance metrics, such as the linear correla-
tion coefficient, require to compare linear correlation, for a fair
comparison, the nonlinear mapping is carried out between the
objective score and MOS. The following nonlinear function
is employed before the performance evaluation for all video
quality metrics:

q(x) = α1

(
0.5 − 1

1 + exp(α2(x − α3))

)
+ α4x + α5 (29)

where α1 to α5 are the parameters obtained by regression
between the input and output data. As for metrics of perfor-
mance evaluation, the Pearson correlation coefficient (PCC),
the Spearman rank order correlation coefficient (SROCC) and
root MSE (RMSE) are employed as described in [43] and [44].
PCC generally indicates the goodness of linear relation. The
SROCC is computed on ranks and thus depicts the monotonic
relationships, whereas the RMSE computes the prediction
errors and thus depicts the prediction accuracy.

B. Performance at Two Stages

The proposed algorithm consists of two main stages to sim-
ulate the visual signal processing in the HVS. In the first stage,
the foveated low-pass filtering is implemented to simulate
the initial processing of the HVS. Then, the masking effect
is considered to simulate high-level processing in the HVS.
To verify the effectiveness of each step in the proposed algo-
rithm, the intermediate results of each step were investigated,

including the performance of the model with foveated low-
pass filtering only (denoted as CSF), and complete model.
The results are summarized in Table II.

As we can see in Table II, the performance under each
performance evaluation method is improved at each stage
under all databases. In the MCLV database, MSE does not
perform well compared with other databases, achieving only
around 0.45 and 0.44 in PCC and SROCC, respectively.
Even after processing with the foveated low-pass filtering,
the performance has not improved significantly because in the
MCLV database, the video contents are quite diverse. That
makes the masking effect vary dramatically among different
sequences and, as a consequence, MSE becomes inconsistent
over different video content. When only the masking effect is
considered, performance is improved significantly compared
with the foveated low-pass filtering. When both models are
taken into consideration in the final stage, we can see that
the performance has improved to 0.972, 0.967, and 0.519
in PCC, SROCC, and RMSE, respectively. As far as the
VQEG and IRCCyN databases are concerned, MSE achieves
better performances than in the MCLV database, and the
performance is further improved at each step.

C. Overall Performance

In this section, we compare the performance of the proposed
method with other benchmarks, including: MS-SSIM [52],
VIF [53], ST-MAD [54], VQM [55], MOVIE [56]. Default
settings were used for all the benchmarks, except for MOVIE.1

Only the luminance component is used for analysis. Table III
summarizes the performance of all the video quality metrics
in the MCLV, the VQEG, and the IRCCyN databases, where
the best performance is highlighted in boldface.

From Table III, we can see that the proposed PW-MSE
achieves the best performance among all the video quality
metrics and performs consistently well that it obtains PCC
and SROCC above 0.9 on all the three databases.

The scatter plots of the subjective quality scores against
objective quality scores are shown in Fig. 5 for the three
databases. In order to plot in the same scale, the MOS
was normalized and the objective scores were obtained after
applying the nonlinear fitting to MOS. We can see the width of
the PW-MSE’s scatter plot is the narrowest among the quality
metrics, which implies that it has a more direct correlation
between the objective and subjective quality scores than other
metrics.

1Due to the limited computational capability, the frame interval of MOVIE
is set to 32 for the MCLV and VQEG databases, instead of the default value 8.
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TABLE III

OVERALL PERFORMANCE ON VARIOUS DATABASES

Fig. 5. Scatter plot of MOS versus predicted MOS by various quality metrics. (a) VIF. (b) MS-SSIM. (c) ST-MAD. (d) MOVIE. (e) VQM. (f) PW-MSE.

V. CONCLUSION

In this paper, PW-MSE is proposed for compressed
videos. The masking effect as well as the low-passing filter
characteristics of the initial process of HVS is explored.
To mathematically model and simulate the initial process in
HVS, the foveated CSF is adopted as the transfer function in
the frequency domain. The error signal from the compression
distortion is filtered with the proposed transfer function
in the spatial domain, which removes most errors in high
frequency that cannot be perceived by humans. Furthermore,
after processing the initial part of HVS, the error signal is
highly affected by various masking effects from different
image contents. To study the masking effect quantitatively,
the randomness is proposed to measure it by modeling
the video with a dynamic system. Moreover, a modulation
relation among the randomness and the distortion before
masking and after masking is investigated across various
video contents. By observing the relation of MOS and the
distortion before masking effect, a masking modulation model
is proposed based on the randomness measurement. PW-MSE
is tested on databases with various compression distortions.
By validating at every step, each step of the proposed
PW-MSE contributes to the overall performance improvement.
The performance comparison with other benchmark image

quality metrics and video quality metrics demonstrates the
effectiveness of PW-MSE.

APPENDIX

INVERSE FOURIER TRANSFORM OF CSF

To simplify the notation, CSF in (4) is expressed as

CSF(ω) = b · exp(−a · ω) ω ≥ 0 (30)

where b = c0(k1+k2|log(ε ·vr/3|3 ·vr and a = c1 ·(e+e2)/e2 ·
(ε · vr + 2)/k3. Equation (30) defines only ω ≥ 0, and the
negative axis is not defined. If we assume the filter in spatial
domain is a real even function, CSF should be symmetric along
the y-axis in the frequency domain as

CSF(ω) = b · exp(−a · |ω|). (31)

By applying the inverse Fourier transform to (31), we can
have the filter in the spatial domain

f (dF ) = 1

2π

∫ +∞

−∞
CSF(ω)e jωdF dω

= b

2π

∫ +∞

−∞
(e−aω · u(ω) + eaω · u(−ω))e jωdF dω

= 1

π

ab

a2 + d2
F

. (32)
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