WLDISR: Weighted Local Sparse Representation-Based Depth Image Super-Resolution for 3D Video System

Huan Zhang, Yun Zhang, Senior Member, IEEE, Hanli Wang, Senior Member, IEEE, Yo-Sung Ho, Fellow, IEEE, and Shengzhong Feng

Abstract—In this paper, we propose a Weighted Local sparse representation based Depth Image Super-Resolution (WLDISR) schemes aiming at improving the Virtual View Image (VVI) quality of 3D video system. Different from color images, depth images are mainly used to provide geometrical information in synthesizing VVI. Due to the view synthesis characteristics difference between textural structures and smooth regions of depth images, we divide the depth images into edge and smooth patches and learn two local dictionaries, respectively. Meanwhile, the weight term is derived and incorporated explicitly in the cost function to denote different importance of edge structures and smooth regions to the VVI quality. Then, local sparse representation and weighted sparse representation are jointly used in both dictionary learning and reconstruction phases in depth image super-resolution. Based on different optimizations on learning and reconstruction modules, three WLDISR schemes, WLDISR-D, WLDISR-R, and WLDISR-ALL, are proposed. Experimental results on 3D sequences demonstrate that the proposed WLDISR-D, WLDISR-R, and WLDISR-ALL schemes can achieve more than 1.9-, 2.03-, and 2.16-dB gains on average, respectively, in terms of the VVIs’ quality, as compared with the state-of-the-art schemes. In addition, the visual quality of VVIs is also improved.

Index Terms—3D video, depth image, super-resolution, sparse representation, virtual view image quality.

I. INTRODUCTION

NOWADAYS, 3D and Free Viewpoint Video (FVV) system is becoming more and more prevalent, since it can provide interactive and immersive visual experiences at any viewpoint and angle for users. Multiview depth images, which reflect geometrical information of a 3D world scene, are one of the key components of 3D content. To enable the arbitrary view generation and interactive functionality of the 3D and FVV system, the multi-view depth videos shall be encoded and transmitted with the multi-view color videos to the clients. High quality and High-Resolution (HR) depth images are highly demanded in rendering high quality VVIs [1]–[3]. However, depth images captured by the current depth camera based on Time-of-Flight mechanism, are usually with very limited resolution compared with corresponding color images [4], [5]. Though depth images generated from stereo matching algorithms have the same high resolution as the color images, under the transmission bit rate constraints, reduced resolution depth image coding is often used in transmission [6]–[8]. In view of the above two typical situations, depth images with Low-Resolution (LR) are often adopted in 3D video system. Therefore, depth image Super-Resolution (SR) method is highly desired in order to improve the visual quality in 3D video system.

Many image SR methods have been developed recently. Yang et al. [9] proposed the groundbreaking work of image SR via sparse representation called Sparse Coding Super Resolution (ScSR), which was based on the assumption that the corresponding LR and HR patches share the same coefficients represented by the coupled LR-HR dictionary. Zeyde et al. [10] improved the dictionary learning method in [9] and reduced the dimension of the LR features, so as to improve the quality of the reconstructed HR images. In [11] and [12], inspired by neighbor embedding and sparse coding, a very effective and relatively much faster SR method was proposed. Based on [11] and [12], Zhang et al. [13]...
incorporated the clustering and collaborative representation methods, and proposed an effective and faster SR method. In addition, there are also some deep-learning based image SR methods [4], [14]. However, it is not an effective way to directly apply image SR methods into depth image SR, since depth images have different characteristics from color images, e.g. more sharp edges and fewer textures. Depth image SR shall be specifically designed in view of the characteristics of depth images themselves.

Example-based SR methods have gained popularity in depth image SR recently. These methods include sparse representation based [9], [15], [16], Markov Random Field (MRF)-based [17], [18], and the neighbor embedding based [19] methods. The main idea of example-based SR methods is to learn LR-HR image priors from external or interior image patches, which helps reconstruct high frequency details from LR depth images with the learned image priors. Since sharp edges contain higher frequency details than smooth regions in depth images, it is more difficult to restore edges or textures in depth image SR. In order to alleviate this problem, some depth image SR methods focus on edges to reconstruct better quality edge structures [5], [15], [20]–[22]. Mandal et al. [5] trained multiple sub-dictionaries via K-means clustering and added an edge-preserving regularization term to localize the discontinuities in depth images. Liu et al. [15] applied a combined wavelet-contourlet dictionary in the depth image SR reconstruction and proposed an efficient depth-gradient related randomized sampling scheme. Ferstl et al. [20] employed the LR-HR patches to learn not only the LR-HR dictionary pairs but also the edge priors. The edge priors were then used as a regularization constraint in a variational SR. An edge-guided depth image SR method was proposed in [21], where a HR edge map was first generated based on the exemplar-based method via MRF framework. The edge map was then used as a guide to help up-sample the LR depth image through a modified joint bilateral filter. To sharpen edges and reduce the jagged noises in depth images, Xie et al. [22] added an adaptively regularized shock filter in reconstructing the HR depth image via the coupled dictionary learning. These methods put much emphasis on the edges in depth images and have achieved improvements in reconstructing the HR depth images. However, depth images are not used for watching directly in FVV but to provide geometrical information in rendering VVIs [1], [2]. In this case, image SR methods of maximizing the Peak Signal-to-Noise Ratio (PSNR) of depth images, cannot guarantee the efficiency in promoting the quality of VVIs.

In addition, several depth image SR works have further taken the quality of VVI into consideration [23]–[25]. Hu et al. [23] used the original texture image of one single view and the corresponding LR depth image to synthesize the neighboring texture image. Then, the error between the original and the synthesized neighboring texture image was used as a regularization term in the depth image SR of this single view, taking advantage of multiple views to enhance the quality of VVIs. A patch-based SR method was proposed in [24] by using the synthesis error as a criterion to select the best SR result out of various SR methods. To make the LR depth image values more reliable, Lei et al. [25] first proposed a credibility based multi-view depth images fusion strategy which took both the VVI quality and interview correlation into consideration. A VVI quality oriented trilateral depth-image SR method was then proposed, which incorporated VVI quality as well in the weighting coefficient of the SR filter. These methods have achieved good performance in improving VVI quality. However, these methods didn’t consider different view synthesis characteristics of texture and smooth regions in depth image SR.

Recently, Zhang et al. [26] proposed multi-view depth video coding and bit allocation optimization schemes considering view synthesis characteristics of regions with different textures. In the inspiration of Zhang et al. [26], we distinguish edge regions from smooth regions and consider view synthesis characteristics for these two regions in depth image SR. In this paper, we propose a Weighted Local sparse representation based Depth Image Super-Resolution (WLDISR) method. First of all, different from previous depth image SR methods, our goal is to maximize the VVI quality rather than the depth images quality in depth image SR. Towards this goal, the view synthesis distortion model is incorporated into the optimization objective function. Moreover, due to different view synthesis characteristics, edge and smooth regions are reconstructed separately, and the view synthesis distortion models with corresponding parameters are employed. The weighted terms are derived for the two regions accordingly. Local sparse representation and weighted sparse representation are then assembled in dictionary learning and reconstruction phases in depth image SR. Lastly, three WLDISR schemes are proposed based on different optimizations on learning and reconstruction modules. The rest of this paper is organized as follows. Our proposed schemes are presented in Section II. Then, detailed experimental results and analyses are elaborated and presented in Section III. In addition, the effects of some key factors are analyzed and discussions are described in Section IV. Finally, conclusions are drawn in Section V.

II. THE PROPOSED WLDISR

A. Proposed WLDISR Framework

3D and FVV video system mainly consists of six major components: 3D and multiview video acquisition, encoding, transmission, decoding, view generation, and display [2], [26]. The mainstream data format of 3D system is Multiview Video plus Depth (MVD), i.e. multiview color and depth video. Multiview color video is generated by multiple cameras with HR texture images. Multiview depth video is composed of LR depth images captured by multiple depth cameras or less precise HR depth images generated by stereo matching based algorithms. These MVD are encoded at the server, and transmitted to the client. At the client, they are decoded, and the decoded MVD are used to synthesize intermediate VVIs through Depth Image Based Rendering (DIBR) technology. Due to the reduced resolution depth coding and limited resolution of depth camera, depth image SR is often required. Therefore, in this paper, we propose a depth image SR method aiming at improving the VVI quality in 3D video system.
Fig. 1. The framework of WLDISR. (a) Dictionary learning phase; (b) Reconstruction phase.

Fig. 1 shows the framework of our proposed WLDISR depth image SR method, which has two major components: dictionary learning phase, and reconstruction phase. We employ local and weighted sparse representation jointly for edge and smooth regions in both dictionary learning and reconstruction phases.

The framework of the dictionary learning phase is shown in Fig. 1(a). In the dictionary learning phase, the inputs are a set of depth images of HR-LR image pairs from several 3D sequences denoted as \{G_n, Z_n\}. The LR image \(Z_n\) is down-sampled from the HR image \(G_n\) by bicubic interpolation method, and these LR images are up-sampled to the same resolution as HR depth images by bicubic method as well. HR and LR feature maps \{X_m, Y_m\} are extracted from HR-LR image pairs \{G_n, Z_n\} by feature extraction [9]. The extracted HR and LR feature maps are divided into edge and smooth feature patches set \{X^E, Y^E\} respectively after edge detection of LR images. The HR and LR feature patches are classified as edge or smooth feature patches based on the number of edge pixels in the corresponding LR patches after canny edge detection. The patch size is set as \(5 \times 5\) and the patches are classified as edge patches if the number of edge pixels is larger than 1. In addition, only patches with patch variance greater than 10 are kept for training. Afterwards, the remaining edge and smooth feature patches pairs are organized as LR-HR pairs to train the coupled LR-HR edge and smooth dictionaries \(\{D_E, D_S\}\), where \(D_E\) and \(D_S\) consist of the dictionary pairs \(\{D_{E,l}, D_{E,h}\}\) and \(\{D_{S,l}, D_{S,h}\}\), respectively.

Fig. 1(b) shows the reconstruction phase of WLDISR. Given an LR depth image \(Z_m\), LR feature map \(Y_m\) is then generated from \(Z_m\). After edge detection, \(Y_m\) is divided into overlapped LR edge and smooth feature patches. Then, HR edge and
smooth patches are reconstructed from LR edge and smooth patches through dictionaries D_E, D_S, respectively. HR edge and smooth patches are then merged to reconstruct the final HR depth image G_m.

At the validation process, for any two views, e.g. view m and view $m+1$, the reconstructed HR depth images G_m and G_{m+1} generated from the reconstruction phase are combined with the corresponding HR color images, I_m and I_{m+1}, to synthesize the intermediate VVI I'_v via the DIBR module. Meantime, via the DIBR module, original HR depth images G_m, G_{m+1} combining with HR color images I_m, I_{m+1} are used to synthesize the VVI I'_v, which is used as a reference VVI. Finally, the quality of I'_v, denoted as Q_v, is calculated based on the comparison between the rendered I'_v and reference I'_v. The overview of validation process is shown in Fig. 2.

To improve the VVI quality Q_v, we develop three depth image SR schemes. WLDISR-D and WLDISR-R schemes are proposed to optimize the dictionary learning and reconstruction modules individually. In addition, the WLDISR-ALL scheme is developed to optimize both dictionary learning and reconstruction modules with the weighted local sparse representation. Overall, these schemes will be presented in detail in the following subsections.

B. Dictionary Learning Phase of WLDISR

In this subsection, we first describe the dictionary learning process of the WLDISR scheme, and then determine the optimal weight for the dictionary learning in WLDISR.

Instead of using the HR/LR depth image pairs $\{G_n, Z_n\}$ directly, we use their corresponding feature maps $\{X_n, Y_n\}$ in the dictionary learning, which are divided into patch sets $\{X^h, Y^h\}$. $X^h = \{x_1, x_2, x_3, \ldots, x_N\}$ represents the set of HR depth image feature patches, and $Y^h = \{y_1, y_2, y_3, \ldots, y_N\}$ represents the set of LR depth image feature patches. N is the total number of HR/LR depth image feature patches. Note that each HR depth image feature patch x_i is obtained by subtracting the mean value of each patch in HR depth image G_n; each LR depth image feature patch y_i comes from the LR feature map Y_n, which is acquired by using high pass filter directly on the interpolated LR depth image Z_n [9]. The dictionary learning objective function for depth images using ScSR [9] can be formulated as

$$\min_{\{D_h, D_l, \alpha\}} \left(\sum_i \sum_\phi \Lambda_{\phi,i} + \lambda \| \alpha_i \|_1 \right),$$

(1)

where $\{x_i, y_i\}$ represents the i-th HR and LR training image feature patch pair, $\{D_h, D_l\}$ represents HR and LR dictionary pair, $\| \alpha_i \|_1$ is the sparsity term with L_1 norm, α_i is the sparse coefficient of patch pair $\{x_i, y_i\}$, and λ regulates the sparsity. $\phi \in \{h, l\}$, ‘h’ denotes HR, and ‘l’ denotes LR. The fidelity term $\Lambda_{\phi,i}$ is the difference between the i-th original and reconstructed HR/LR depth image feature patch, i.e., x_i/y_i and $D_h \alpha_i/D_l \alpha_i$. In fact, $\Lambda_{\phi,i}$ represents the depth image feature patch distortion. u and v are the dimensions of HR and LR depth image feature patches x_i and y_i, respectively.

The objective in (1) is to minimize the reconstructed HR/LR depth image distortion subject to sparsity. However, the depth image is mainly used as the geometrical information for view rendering in 3D video system instead of being watched directly. Thus, the quality of VVIs that rendered from the depth images shall be considered in learning dictionaries for depth images, which can be formulated as

$$\min_{\{D_h, D_l, \alpha\}} \left(\sum_i \sum_\phi \Lambda_{\phi,i} + \lambda \| \alpha_i \|_1 \right),$$

(2)

where $\Lambda_{\phi,i}$ is the VVI feature difference from reconstruction in dictionary learning. $F(\cdot)$ is a function mapping the depth image feature difference $\Lambda_{\phi,i}$ to the VVI feature difference $\Lambda_{\phi,i}$. Fortunately, the relationship between VVIs distortion and depth images distortion has been explored in [26]–[29]. These works include the allowable depth distortion model in view synthesis [28], and view synthesis distortion models considering regional selective properties of depth images [26], and color-depth joint distortions [27], [29]. In this paper, we use the view synthesis distortion model proposed by Zhang et al. [26], in which the relationship between depth image distortion and VVI distortion is analyzed for edge and smooth regions. Over all the regions, edge regions, and smooth regions in depth images, the VVI distortion measured by
Mean Squared Error (MSE), MSE_V, can be approximated as a linear model of depth distortion measured by MSE, MSE_D, which can be presented as [26]

$$MSE_V = t_\phi MSE_D + \varepsilon_\phi,$$

where t_ϕ represents the view synthesis weight for region ϕ, and ε_ϕ is a constant denoting initial VVI distortion from DIBR. $\phi \in \{ALL, E, S\}$, where ‘ALL’ denotes the entire image, ‘E’ denotes edge regions, and ‘S’ denotes smooth regions. t_ϕ is content dependent and correlates with camera parameters, rendering positions, distortions in color image, and video contents. For one sequence, t_E is usually larger than t_S since the distortions in edge regions have severer impacts on VVI quality than those in smooth regions. Note that (3) is a mapping function from depth distortion MSE_D to VVI distortion MSE_V in the image domain. Since the feature map extraction for $\{X^h, Y^l\}$ is a linear process, the relationship between the quality of VVI feature maps and depth image feature maps could be approximated as a linear function through experiments, as illustrated in Appendix. Thus, the relationship in (3) is also applicable to map the patch-wise depth image feature difference $\Delta_{\phi,i}$ to the VVI feature difference $\Delta_{\phi,i}$, which is in feature domain and can be presented as

$$\Lambda_{\phi,i} = F(\Delta_{\phi,i}) = t_\phi \Delta_{\phi,i} + \varepsilon_\phi.$$

Apply (4) to (2), and the VVI quality oriented dictionary learning objective function for depth images can be written as

$$\min_{\{D_{k,h}, D_{k,l}, \alpha_k\}} \left(\sum_i t_{ALL} \Delta_{\phi,i} + \lambda \|\alpha_k\|_1 \right),$$

where t_{ALL} is the weighting factor that transforms $\Delta_{\phi,i}$ to $\Lambda_{\phi,i}$ for an entire depth image. When t_{ALL} equals to 1, (5) will be degraded to (1), which is the dictionary learning for depth images by using ScSR [9].

Due to different view synthesis characteristics of different texture regions [26], VVI feature map distortions or VVI distortions of edge and smooth regions should be considered separately in depth image SR. It means the process of learning dictionaries shall be considered separately. In [30] and [31], local structures or block areas of a face were constrained to share the same dictionary atoms of a dictionary or represented by a local dictionary. The local structures or patches sharing the similar characteristics could be locally represented by local dictionaries. In order to exploit different view synthesis characteristics of edge and smooth regions, the HR and LR edge and smooth patches shall be trained to learn local edge and smooth HR-LR dictionaries separately.

We divide training feature patch sets $\{X^h, Y^l\}$ into two subsets $\{X_{k}^{h}, Y_{k}^{l}\}$, where $k \in \{E, S\}$. ‘E’ denotes edge region, ‘S’ denotes smooth region. Let $X_{k}^{h} = \{x_{k,1}, x_{k,2}, x_{k,3}, \ldots, x_{k,N(k)}\}$ represent the set of HR depth image feature patches of region k, where $N(k)$ is the number of patches for region k, and let $Y_{k}^{l} = \{y_{k,1}, y_{k,2}, y_{k,3}, \ldots, y_{k,N(k)}\}$ represent the set of LR depth image feature patches of region k. To learn the dictionary for region k, VVI quality oriented local dictionary learning objective can be derived as

$$\min_{\{D_{k,h}, D_{k,l}, \alpha_k\}} \left(\sum_i F_k(\Delta_{\phi,i}) + \lambda \|\alpha_k\|_1 \right),$$

where $\Delta_{\phi,i}$ represents the distortion of the i-th patch in the region k of LR/HR depth images, $\{x_{k,i}, y_{k,i}\}$ represents the i-th LR and HR training depth feature patch pair of region k. $\{D_{k,h}, D_{k,l}\}$ represents LR and HR dictionary pair for region k. $F_k(\cdot)$ is a mapping function from the depth feature map distortion to the VVI feature map distortion for region k. According to (4), we find that the linear relationship is applicable for edge and smooth regions, i.e., $F_k(\cdot)$ is the $F(\cdot)$ with different t_k.

Therefore, applying (4) to (6), the VVI feature map quality oriented objective function of dictionary learning for edge and smooth regions can be written as

$$\min_{\{D_{k,h}, D_{k,l}, \alpha_k\}} \left\{ t_k \|\Psi_{k,c} - D_{k,c} \alpha_k\|_2^2 + \lambda \|\alpha_k\|_1 \right\},$$

where $\Psi_{k,c}$ equals to $[1/\sqrt{k^h X^h}, 1/\sqrt{k^l Y^l}]^T$, representing the set of LR and HR training depth image feature patch pairs for region k, and $D_{k,c}$ equals to $[1/\sqrt{k^h D^h_k}, 1/\sqrt{k^l D_l_k}]^T$, representing LR and HR edge or smooth dictionary pairs. α_k is a simplified form of the sparse coefficients $\alpha_{k,i}$ for all the patches in region k. t_k denotes different impacts of the reconstruction loss of edge or smooth patches on the VVI feature map quality. It may have similar effects as the regularization parameter λ does. t_k plays the role like those weighted terms employed in [32]–[34], in which weights were added into data fidelity terms or dictionary atoms to strengthen different contributions of data or dictionary atoms. Generally, (7) learns two different local dictionaries with different weight t_k and learning patches, which is regarded as the weighted local dictionary learning in this paper. Moreover, feature-sign search algorithm and Lagrange dual algorithm [35] are used to solve the L1-regularized least squares problem and L2-constrained least squares problem in (7), respectively.

To learn an optimal dictionary for the depth image, we shall determine t_k. The relationship between the weights t_E, t_S and VVI quality Q_V were experimentally analyzed. We set a number of different weight sets $\{E, S\}$, which were then used to learn a number of different local dictionaries. Since the reconstruction of edge regions is independent from that of smooth regions, we optimized the dictionary learning of edge and smooth regions individually. Candidate t_k, $k \in \{E, S\}$, was set in the range $\{1.0 \leq t_k \leq 0.0\} \leq \log_{10} t_k \leq 1.10\}$; i.e. $\{t_k | 0.01 \leq t_k \leq 12.60\}$. These learned dictionaries were then used to reconstruct the HR depth images by using the ScSR. Then, the reconstructed HR depth images were used in rendering the VVI, V_{k}, at the validation phase.

The second to eighth rows of Table I show the configurations for the training sequences, including Kendo, Lovebird1, Newspaper, PoznanHall2, PoznanStreet, Shark, and Undodancer. They have various contents and resolutions, and also...
TABLE I
PROPERTIES AND SETTINGS FOR WLDISR TRAINING, VALIDATION, AND TESTING

<table>
<thead>
<tr>
<th>3D Sequences</th>
<th>Resolution</th>
<th>Depth Image Generation Method</th>
<th>Views</th>
<th>Rendered View</th>
<th>Training Frame</th>
<th>Validation Frame</th>
<th>Testing-Short Term Frames</th>
<th>Testing-Long Term Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovebird1</td>
<td>1024×768</td>
<td>stereo matching</td>
<td>4, 6</td>
<td>5</td>
<td>5th</td>
<td>/</td>
<td>101th–110th</td>
<td>/</td>
</tr>
<tr>
<td>Kendo</td>
<td>stereo matching</td>
<td>1, 3</td>
<td>2</td>
<td>5th</td>
<td>/</td>
<td>105th</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Newspaper</td>
<td>depth cameras</td>
<td>2, 4</td>
<td>3</td>
<td>5th</td>
<td>/</td>
<td>105th</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>PoznanHall2</td>
<td>1920×1088</td>
<td>stereo matching</td>
<td>5, 7</td>
<td>6</td>
<td>5th</td>
<td>/</td>
<td>101th–110th</td>
<td>/</td>
</tr>
<tr>
<td>Shark</td>
<td>computer graphics</td>
<td>1, 5</td>
<td>3</td>
<td>5th</td>
<td>/</td>
<td>101th</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Undodancer</td>
<td>computer graphics</td>
<td>1, 3</td>
<td>2</td>
<td>5th</td>
<td>/</td>
<td>101th</td>
<td>13th–200th</td>
<td></td>
</tr>
<tr>
<td>Poznanstreet</td>
<td>stereo matching</td>
<td>3, 5</td>
<td>4</td>
<td>5th</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Balloons</td>
<td>1024×768</td>
<td>stereo matching</td>
<td>1, 3</td>
<td>2</td>
<td>/</td>
<td>100th</td>
<td>101th–110th</td>
<td></td>
</tr>
<tr>
<td>Bookarrival</td>
<td>stereo matching</td>
<td>8, 10</td>
<td>9</td>
<td>9</td>
<td>100th</td>
<td>90th–99th</td>
<td>13th–100th</td>
<td></td>
</tr>
<tr>
<td>GhostTownFly</td>
<td>computer graphics</td>
<td>1, 5</td>
<td>3</td>
<td>/</td>
<td>100th</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café</td>
<td>depth cameras</td>
<td>2, 4</td>
<td>3</td>
<td>/</td>
<td>/</td>
<td>101th–110th</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>Poznan CarPark</td>
<td>stereo matching</td>
<td>3, 5</td>
<td>4</td>
<td>/</td>
<td>/</td>
<td>101th–110th</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

Note that symbol ’b’ indicates it is not used in training, validation or testing.

generated by different depth generation methods, including stereo matching, computer graphic, or captured by depth camera. Two views of each sequence listed in the fourth column and one frame of each view listed in the sixth column were used in learning the dictionaries, thus 14 depth images in total were used for training. The 14 depth images are enough for the dictionary training for two main reasons: one is that the number of the valid edge and smooth patches obtained from these 14 depth images is up to 35,000 and 6,000 respectively, which is sufficient for edge and smooth dictionary training; the other is these 14 depth images possess the diversity since they cover different spatial resolutions, depth image generation methods, image contents, and so on. The ninth to eleventh rows of Table I list the related configurations of the three sequences, i.e. GhostTownFly, Balloons, and Bookarrival, which were adopted in the reconstruction and validation phases. Two views of each sequence, and one frame, i.e. 100th frame, of each view were used in validation. Note that the original ScSR method was used in reconstructing the HR depth image in order to analyze the performance of the learned dictionaries. In this depth image SR experiment, the scaling factor was 2. The intermediate VVIs were synthesized from two views of the reconstructed HR depth images and color images by using DIBR algorithm. Meanwhile, VVIs synthesized with the color images and the original depth images of each sequence were taken as reference VVIs for quality comparison.

Fig. 3(a) illustrates the relationship between the weights \(t_E \) and VVI quality, where the \(y \)-axis is PSNR of VVI and the \(x \)-axis is \(\log t_E \). It can be observed that the curve of each sequence and the average curve of three sequences can be approximated as a quadratic model, and the quadratic model used to fit each curve can be formulated as

\[
Q_v = f(r_E) = ar_E^2 + br_E + c, \tag{8}
\]

where \(r_E \) equals to \(\log t_E \), \(a \), \(b \), and \(c \) are model parameters. \(Q_v \) is the VVI quality and \(f(.) \) is a mapping function from \(r_E \) to VVI quality \(Q_v \). The fitting R-square for the average curve is 0.73. Actually, other fitting algorithms, such as higher rank polynomial functions, can be used to achieve higher fitting accuracy. However, to prevent over-fitting and obtain more reliable results, we use this quadratic model in (8). By taking the derivative of \(f(r_E) \) with respect to \(r_E \) and setting its value as zero, we then get the optimal weight of \(r_E \), 0.53, for the average curve. Since the difference between the optimal weights of each sequence is slight, we adopt this optimal \(r_E \) to learn the dictionaries for all depth images for simplicity. Accordingly, the optimal weight \(t_E \) for the dictionary learning, denoted as \(t_E, D \), is 100.53, i.e. 3.40.
In addition, the relationship between t_S and VVI quality is also analyzed, as shown in Fig. 3(b). The x-axis is the logt_S and y-axis is the quality of VVI generated with the reconstructed HR depth images. We can observe that when logt_S $\in [-2.00, -0.50]$, Q_v of the four curves is consistent and relatively higher as compared with those larger logt_S. There are small variations when logt_S is larger than -0.50. When logt_S $\in [-2.00, -0.50]$, it is observed from experiment that the learned dictionary is made up of atoms with all zeros, which results from the small t_S. The corresponding HR depth images are actually reconstructed from the average value of LR image patches, which is similar to an averaging operation. It makes sense since the smooth region of depth images has much less texture and doesn’t bother to use a dictionary to represent. We denote the optimal weight t_S, which is actually in the range of $[t_S|0.01 \leq t_S \leq 0.32]$, as ‘AvgLR’ for learning smooth dictionary.

The dictionaries of edge and smooth regions are learned individually with the weighted local sparse representation. When only the dictionary learning module is optimized with WLDISR and the reconstruction phase uses ScSR, we denote this scheme as WLDISR-D.

C. Reconstruction Phase of WLDISR

At the reconstruction stage, the original LR image Z is first interpolated to the up-sampled LR image Z_{up} with the same resolution as the targeted resolution. Then, a LR feature map Y is extracted from the up-sampled LR image Z_{up}, and Z_{up} and Y are divided into overlapped patches $z_{up,i}$ and y_i respectively in a same partition way where $z_{up,i}$ collocates with y_i. The optimal coefficients $\{\alpha_i\}$ for these overlapped LR feature patches $\{y_i\}$ can be obtained by solving the following optimization problem

$$\alpha_i^* = \arg \min_{\alpha_i} \sum_i \|y_i - D_i\alpha_i\|_2^2 + \lambda \|\alpha_i\|_1,$$ \hspace{1cm} (9)

where D_i is the LR dictionary, α_i is the sparse coefficient for patch y_i. LASSO [36] is employed to solve (9). Then, based on the optimal coefficients α_i^* and the dictionary pair $\{D_i, D_h\}$, $D_h\alpha_i^*$, namely the reconstructed HR depth image feature patch $\hat{\alpha}_i$, which corresponds to the LR feature patch y_i, can be obtained. The associated HR patch denoted as g_i can be constructed as

$$g_i = D_h\alpha_i^* + g_{0,i}^\lambda,$$ \hspace{1cm} (10)

where $D_h\alpha_i^*$ can be regarded as the reconstructed texture part of g_i. $g_{0,i}^\lambda$ is the mean patch with each pixel as $g_{0,i}^\lambda$, which is calculated based on the mean value of LR image patch $z_{up,i}$. All the overlapped HR patches g_i will be merged into an initial HR image G_0. Then, more delicate HR solution G^* can be iteratively updated using back-projection method while minimizing the difference between down-sampled G and the original LR image Z. This process can be expressed as

$$G^* = \arg \min_X \|HG - Z\|_2^2,$$ \hspace{1cm} (11)

where H is a composite operator of down-sampling and blurring operations. (11) is solved by using gradient descent method. Since the depth image is not viewed directly but used to synthesize the VVIs, the VVI quality shall also be considered in the reconstruction stage. Meanwhile, due to different view synthesis characteristics between edge and smooth regions, their dictionary pairs and reconstruction objectives shall be used and developed individually. Though there are minor mutual effects between edge and smooth regions during back-projection process, the reconstruction of the edge regions can be generally deemed as independent from that of smooth regions. Thus, given the original LR depth image at view m, Z_m, it is divided into the edge and smooth regions, which is denoted as $Z_{m,k}$, $k \in \{E, S\}$. Accordingly, the corresponding feature map of $Z_{m,k}$ is $Y_{m,k}$. Therefore, similar to (9)-(11), the VVI quality oriented depth image reconstruction process for region k can be presented as

$$\alpha_{k,i}^* = \arg \min_{\alpha_{k,i}} \sum_i F \left(\|y_{k,i} - D_{k,i}\alpha_{k,i}\|_2^2 + \lambda \|\alpha_{k,i}\|_1 \right),$$ \hspace{1cm} (12)

$$g_{k,i} = D_{k,i}\alpha_{k,i}^* + g_{0,k,i}^\lambda,$$ \hspace{1cm} (13)

$$G_{k}^* = \arg \min_{G_k} F \left(\|H_k G_k - Z_{m,k}\|_2^2 \right),$$ \hspace{1cm} (14)

where $y_{k,i}$ is the i-th LR depth image feature patch of region k. Here, $F()$ is used to map the LR depth feature map distortion to the LR VVI feature map distortion for region k. $g_{k,i}$ is the i-th reconstructed HR image patch of region k in a depth image and $g_{0,k,i}^\lambda$ is the value of each pixel in the mean patch $g_{0,k,i}^\lambda$ of $g_{k,i}$. H_k is the composed down-sampling and blurring operator for region k. $Z_{m,k}$ represents region k of the input LR depth image at view m, i.e. Z_m in Fig. 1(b). G_{k}^* is the reconstructed HR depth image of region k. Finally, after obtaining G_{k}^*, $k \in \{E, S\}$, the regions G_{E}^* and G_{S}^* are non-overlapped and can be merged to form the final reconstructed HR depth image G_m.

Similar to the local dictionary learning presented in Section II.B, $F()$ also holds true at the depth image reconstruction phase. Apply (4) to (12), and we can obtain the sparse coefficient for patch i of region k by

$$\alpha_{k,i}^* = \arg \min_{\alpha_{k,i}} \sum_i w_k \|y_{k,i} - D_{k,i}\alpha_{k,i}\|_2^2 + \lambda \|\alpha_{k,i}\|_1,$$ \hspace{1cm} (15)

where w_k is the weighted factor indicating different impacts on VVI quality from the distortion of depth images of region k, $k \in \{E, S\}$. Similarly, apply (4) to (14), and we can obtain the reconstructed HR depth image at region k, G_{k}, by

$$G_{k}^* = \arg \min_{G_k} w_k \|H_k G_k - Z_{m,k}\|_2^2$$

$$= \arg \min_{G_k} \|H_k G_k - Z_{m,k}\|_2^2.$$ \hspace{1cm} (16)

It can be inferred from (16) that the weight w_k has no influence on the process of back projection. However, w_k takes effect in (15) and ultimately affects the depth image SR performance at the reconstruction phase via sparse representation. Therefore, the VVI quality oriented depth image SR can be obtained by using (15) (13) and (16) successively.
So, the optimal edge weight \(w_E \) in sparse coefficients for LR edge patches, i.e. all zeros. When \(w_E \) are consistent. It is mainly because there are no nonzero entries in sparse coefficients for LR smooth patches. In other words, the HR smooth patches are reconstructed by only using the mean patches of the LR smooth patches, i.e. \(g_{S,I}^0 \) in (13). Thus, instead of using the sparse representation based reconstruction, we reconstruct smooth patches of the HR depth image by using the mean value of the LR patch. We denote the weight \(w_S \) as ‘AvgLR’ as well.

In fact, the reconstruction phase and the dictionary learning phase can be separately optimized in depth image SR. When the reconstruction phase only is optimized via WLDISR and dictionary learning phase is identically the same as that of ScSR, we denote this scheme as WLDISR-R.

D. WLDISR Based Joint Optimization on Dictionary Learning and Reconstruction (WLDISR-ALL)

Since the dictionary learning and reconstruction phases can be jointly optimized within the proposed WLDISR, we proposed WLDISR-ALL scheme, which combines WLDISR-D and WLDISR-R. However, due to the high dependency between the dictionary learning module and reconstruction module, i.e., the optimal weights at the reconstruction phase are mutually correlated with the optimal weights at learning phase, optimal weights of the overall process shall be determined jointly. As the smooth region is simple and with much fewer textures, \(t_S \) at learning phase and \(w_S \) at the reconstruction phase are kept unchanged, i.e. both ‘AvgLR’, namely to construct HR smooth patches from average value of LR smooth image patches. In addition, the SR performance of smooth patches is independent from that of edge patches, so we only need to analyze the optimal parameter set for the edge patches for the WLDISR-ALL scheme. To analyze the weights dependency between the reconstruction and dictionary learning phases, we swept the weight \(t_E \) among \(\{ t_E | 0.01 \leq t_E \leq 12.60 \} \) while the weight \(w_E \) was set as the optimal value \(w_{E,R} \) in WLDISR-R. After we obtained the new optimal weight for \(t_E \), denoted as \(t_{E,ALL} \), the weight of reconstruction \(w_E \) varied among \(\{ w_E | 0.01 \leq w_E \leq 100.00 \} \) while \(t_E \) was set as the optimal \(t_{E,ALL} \).

Fig. 5(a) illustrates the relationship between the weights \(t_E \) and VVI quality for edge patches, where the \(x \)-axis is the log\(t_E \) and \(y \)-axis is the PSNR of synthesized VVIs. The dots are real collected data and the curves are fitting results by using the quadratic function in (8). The fitting R-square of the average curve is 0.79. We can observe that the relation is convex, which is similar to the fitting results in Fig. 3(a). In addition, we take its derivative to log\(t_E \) and set it as zero, and get the optimal weight \(t_E \) as 2.47 for edge dictionary learning. In addition, the relationship between \(w_E \) and VVI quality is also analyzed while \(t_E \) is set as 2.47, as shown in Fig. 5(b). It can be observed that the optimal weight \(w_E \) at the reconstruction phase in this joint optimization is \(10^{-0.6} \) too, i.e. 0.25, which is identically the same as the optimal \(w_E \) in WLDISR-R. Based on the above experimental analyses, we can obtain that the ultimate optimal parameter set \(\{ t_E, w_E \} \) of edge patches in WLDISR-ALL scheme is \(\{ 2.47, 0.25 \} \). Meanwhile, the optimal parameters of smooth patches \(\{ t_S, w_S \} \) adopt the ‘AvgLR’ scheme. In summary, the complete optimal parameter set for WLDISR-ALL, \(\{ t_E, t_S, w_E, w_S \} \), is \(\{ 2.47, \text{AvgLR}, 0.25, \text{AvgLR} \} \). In finding the optimal \(t_E \) and \(w_E \), we firstly fix \(w_E \) and sweep \(t_E \), then fix \(t_E \) and sweep \(w_E \) to find their optimal points. In fact, the same optimal \(t_E \) and \(w_E \) can be obtained as we exchange the searching order of \(w_E \) and \(t_E \).
Hence, the optimal weight values of three schemes, i.e. WLDISR-D, WLDISR-R, and WLDISR-ALL, are shown in Table II. In edge dictionary learning, the optimal \(t_E \) of both WLDISR-D and WLDISR-ALL schemes are bigger than 1. As for WLDISR-D and WLDISR-ALL, it means edge patches of depth images in training dataset should be represented by more dictionary atoms subject to a fixed-size dictionary as compared with the original ScSR. Meanwhile, in SR reconstruction, the optimal \(w_E \) of WLDISR-R and WLDISR-ALL is smaller than 1. It implies that edge patches of depth image in the test dataset should be represented by fewer dictionary atoms subject to the fixed-size dictionary compared with ScSR in SR reconstruction. The reason may be that the depth image patches have fewer patterns and textures than color images. In addition, for smooth patches, the best way to reconstruct the HR smooth patches is ‘AvgLR’, in which just one pattern of dictionary atom, i.e. mean patches of smooth patches, is used in learning or reconstruction phases. Since the optimal \(t_S \) of WLDISR-D and WLDISR-ALL, ‘AvgLR’ \(\in \{ t_S | 0.01 \leq t_S \leq 0.32 \} \), is smaller than the weight \(t_E \), i.e. 3.4/2.47, and the optimal \(w_S \) of WLDISR-R and WLDISR-ALL, ‘AvgLR’ \(\in \{ w_S | 0.01 \leq w_S \leq 0.20 \} \), is smaller than the weight \(w_E \), i.e. 0.25, it indicates edge regions are more important than smooth regions, which is consistent with the finding that the distortion of the edge regions has larger impacts on VVI quality.

III. EXPERIMENTAL RESULTS AND ANALYSES

In this section, extensive experiments were performed to testify the performance of the proposed algorithm. In 3D and FVV system, two or more views of color and depth videos are encoded and transmitted. In these experiments, we mainly consider two views situation, where two views of color images are HR and the two views of depth images are LR, and one view of intermediate VVI is rendered by View Synthesis Reference Software, VSRS 3.0 [37]. First, the LR depth images are restored to the HR depth images by our proposed algorithms and the benchmark schemes. Then, intermediate VVIIs are rendered from the HR color view images and reconstructed HR depth images. We compare the SR performance among our proposed schemes, the bicubic interpolation method, the benchmark ScSR [9], and two other state-of-the-art methods [10], [21]. In addition to the PSNR of VVIIs that rendered from the reconstructed depth images, their visual quality is also compared. Moreover, we compare the time complexities of our proposed methods with other schemes.

Four comparison SR methods, including bicubic interpolation method (denoted as Bicubic), the ScSR [9], ‘Zeyde’ scheme [10] (denoted as Zeyde), Edge-guided depth image SR scheme [21] (denoted as Edge-guided) were implemented and compared with our proposed WLDISR-D, WLDISR-R, and WLDISR-ALL schemes. The scaling factor was 2. The downsampling and up-sampling method was Bicubic. For all the methods except Zeyde, they all used the same training set. The training images are 14 depth images in total, which have been described in Section ILB and Table I. For Zeyde, the default training database and default configurations [10] were used. For Edge-guided scheme, we used the default configurations in [21]. For ScSR, WLDISR-D, WLDISR-R, and WLDISR-ALL methods, the setting for the dictionary training is as follows: the number of the training patches was 1,000,000; the patch size was 5 × 5; the number of atoms of the training dictionary was 512; the variance threshold for patches was 10. We extracted 1,000,000 patches randomly from training images, since more patches in training had better and more stable performance in depth image SR as compared with default 100,000 patches setting in ScSR [9]. The way of random extraction is the same as that used in ScSR. To randomly extract the patches, there are two steps: compute the number of patches needed in every image proportional to the image size; randomly pick the patches from all the possible patches of each image.

TABLE II

The Weights in ScSR and WLDISR Schemes

<table>
<thead>
<tr>
<th>Methods</th>
<th>(t_E)</th>
<th>(t_S)</th>
<th>(w_E)</th>
<th>(w_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScSR [9]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WLDISR-D</td>
<td>3.40</td>
<td>AvgLR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WLDISR-R</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
<td>AvgLR</td>
</tr>
<tr>
<td>WLDISR-ALL</td>
<td>2.47</td>
<td>AvgLR</td>
<td>0.25</td>
<td>AvgLR</td>
</tr>
</tbody>
</table>

Note that “AvgLR” denotes using the average value instead of dictionary in dictionary learning or reconstruction.

TABLE III
VVI QUALITY COMPARISONS ON SHORT-TERM SEQUENCES (UNIT: dB)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Balloons*</td>
<td>49.92</td>
<td>48.70</td>
<td>47.49</td>
<td>49.99</td>
<td>50.40</td>
<td>50.54</td>
</tr>
<tr>
<td>Bookarrival*</td>
<td>45.79</td>
<td>43.67</td>
<td>43.22</td>
<td>45.99</td>
<td>46.20</td>
<td>46.12</td>
</tr>
<tr>
<td>Café</td>
<td>40.83</td>
<td>38.40</td>
<td>38.95</td>
<td>41.27</td>
<td>41.33</td>
<td>41.32</td>
</tr>
<tr>
<td>GhostTownFly*</td>
<td>47.68</td>
<td>46.41</td>
<td>45.07</td>
<td>47.87</td>
<td>48.07</td>
<td>48.27</td>
</tr>
<tr>
<td>Lovebird1</td>
<td>45.28</td>
<td>44.52</td>
<td>43.94</td>
<td>45.50</td>
<td>45.67</td>
<td>45.33</td>
</tr>
<tr>
<td>Kendo</td>
<td>54.32</td>
<td>51.75</td>
<td>50.36</td>
<td>54.76</td>
<td>54.70</td>
<td>54.86</td>
</tr>
<tr>
<td>Newspaper</td>
<td>45.29</td>
<td>43.44</td>
<td>42.05</td>
<td>45.52</td>
<td>45.55</td>
<td>45.49</td>
</tr>
<tr>
<td>Poznan CarPark</td>
<td>36.28</td>
<td>36.65</td>
<td>36.64</td>
<td>36.25</td>
<td>36.18</td>
<td>36.17</td>
</tr>
<tr>
<td>PoznanHall2</td>
<td>51.05</td>
<td>49.44</td>
<td>48.47</td>
<td>51.31</td>
<td>51.26</td>
<td>51.70</td>
</tr>
<tr>
<td>Shark</td>
<td>43.46</td>
<td>41.77</td>
<td>41.99</td>
<td>43.70</td>
<td>43.78</td>
<td>43.90</td>
</tr>
<tr>
<td>Undodancer</td>
<td>49.05</td>
<td>46.12</td>
<td>44.27</td>
<td>49.69</td>
<td>50.10</td>
<td>50.99</td>
</tr>
<tr>
<td>Average gain</td>
<td>46.27</td>
<td>44.63</td>
<td>43.86</td>
<td>46.53</td>
<td>46.66</td>
<td>46.79</td>
</tr>
<tr>
<td>Average gain exclude *</td>
<td>45.70</td>
<td>44.01</td>
<td>43.33</td>
<td>46.01</td>
<td>46.08</td>
<td>46.22</td>
</tr>
</tbody>
</table>

TABLE IV
VVI QUALITY COMPARISONS ON LONG-TERM SEQUENCES (UNIT: dB)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undodancer</td>
<td>47.09</td>
<td>44.83</td>
<td>42.60</td>
<td>41.73</td>
<td>46.25</td>
<td>46.64</td>
<td>47.82</td>
</tr>
<tr>
<td>Kendo</td>
<td>50.75</td>
<td>53.89</td>
<td>51.97</td>
<td>50.22</td>
<td>54.33</td>
<td>54.26</td>
<td>54.46</td>
</tr>
<tr>
<td>Café</td>
<td>38.65</td>
<td>40.88</td>
<td>38.79</td>
<td>39.04</td>
<td>41.27</td>
<td>41.35</td>
<td>41.38</td>
</tr>
<tr>
<td>Bookarrival</td>
<td>43.16</td>
<td>46.12</td>
<td>44.53</td>
<td>43.75</td>
<td>46.47</td>
<td>46.55</td>
<td>46.62</td>
</tr>
<tr>
<td>Average</td>
<td>43.29</td>
<td>46.43</td>
<td>44.47</td>
<td>43.69</td>
<td>47.08</td>
<td>47.20</td>
<td>47.57</td>
</tr>
</tbody>
</table>

A. Objective VVI Quality Comparisons

To evaluate the performance of our proposed three schemes, comparison experiments were performed among seven depth image SR schemes, which include the Bicubic, ScSR, Edge-guided, Zeyde, our proposed three schemes WLDISR-D, WLDISR-R, and WLDISR-ALL. All the sequences except Poznanstreet listed in Table I were employed as the test sequences, including Balloons, Bookarrival, Poznan_carpark, Café, GhostTownFly, Lovebird1, Newspaper, PoznanHall2, Kendo, PoznanStreet, and Undodancer. The resolution, views to be upsampled, the rendered view, and testing frames of each test sequences are illustrated in Table I. Specifically, short-term videos with 10 consecutive frames and long-term videos with 100 or 200 consecutive frames were tested.

Table III presents the average PSNR of the VVIs for the eleven short-term sequences. Bookarrival, GhostTownFly, and Balloons, which have been used as validation sequences in determining the weight parameters in Section II, are labeled with symbol ‘∗’. We observe that the average quality of the VVIs rendered from the reconstructed depth image using ScSR, Edge-guided, and Zeyde methods are 46.27 dB, 44.63 dB, and 43.86 dB, respectively, for all the test sequences. The average PSNR of the VVIs from our three proposed schemes are 46.53 dB, 46.66 dB, and 46.79 dB, respectively. We can also observe that the SR performance ranks as WLDISR-ALL, WLDISR-R, WLDISR-D, ScSR, Zeyde, and Edge-guided in terms of VVI quality. The proposed WLDISR schemes are the top three. Moreover, for the test sequences, WLDISR-ALL excels method ScSR, Zeyde and Edge-guided by 0.52 dB, 2.16 dB, and 2.93 dB, respectively, which are significant improvements.

While excluding the sequences labeled with symbol ‘∗’, similar improvements for our proposed schemes against ScSR, Zeyde, and Edge-guided can also be inferred. These improvements on short-term videos have proved that our schemes are more effective in improving the VVI quality as compared with the state-of-the-art depth image SR methods.

In addition, comparison experiments on long-term sequences were also performed to further testify the performance of the proposed algorithms. These four long-term sequences were selected since they are from four different providers, with various resolutions, camera settings, and video contents. Depth videos of Bookarrival and Kendo are from stereo matching, depth videos of Café are generated based on depth camera imaging, and Undodancer is animation video generated by computer graphics. Table IV presents the average PSNR of VVIs generated from the seven depth image SR methods, which were tested on the four long-term consecutive frames. It can be found that Bicubic, ScSR, Zeyde, and Edge-guided achieve 43.29 dB, 46.43 dB, 44.47 dB, and 43.69 dB respectively on average. Our proposed three WLDISR schemes can achieve 47.08 dB, 47.20 dB, and 47.57 dB on average. WLDISR-ALL excels method ScSR, Zeyde, and Edge-guided by 1.14 dB, 3.10 dB, and 3.88 dB on average over the four sequences. Our three schemes achieve the largest gains on average for sequence Undodancer, and the smallest gains on average for sequence Café. These substantial improvements on long-term consecutive frames further indicate that our proposed schemes are effective in improving VVI quality for 3D videos.

More specific frame-by-frame VVI quality comparisons on sequence Café and Undodancer are demonstrated in Fig. 6.
The y-axis denotes the PSNR of the VVI and the x-axis denotes frame index of a sequence. It’s observed that our proposed three schemes are generally better than ScSR, Edge-guided method, and Zeyde’s scheme in VVI quality. The three anchor schemes are mainly designed to improve the visual quality of the depth image. Particularly, Edge-guided is specifically devised to improve the edges of depth image, such as more sharp and less jagged edges in human visual aspect. In comparison, our proposed schemes aim to improve VVI quality by considering the view synthesis impacts in objective functions. Therefore, the proposed three WLDISR schemes are of the top three VVI quality for the test sequences, while the three anchor schemes have inferior performance in terms of VVI quality. Moreover, the WLDISR-ALL is the best one among all the tested schemes for most of the frames.

B. Visual Quality Comparisons Among Rendered VVIs

In addition to comparison studies on the VVI quality among different depth image SR methods, subjective visual quality of the VVIs is also compared. Figs. 7 to 9 demonstrate the visual comparisons among different methods for Undodancer, Café, and Bookarrival sequences. The three sequences are of various types of textures. In addition, their
Fig. 9. Visual comparisons among VVIs from different SR schemes (Bookarrival-34th frame). (a) Original virtual view; (b) enlarged image of the original virtual view; (c) to (i) enlarged images synthesized from the reconstructed HR depth images with Bicubic, ScSR, Zeyde, Edge-guided, WLDISR-D, WLDISR-R, WLDISR-ALL methods.

depth images are generated from computer graphic, camera capturing, and stereo matching, respectively. For all figures from Figs. 7 to 9, (a) is VVI synthesized by color images and original depth images, where the red rectangle is zoomed for comparison; (b) is the zoomed region of the original VVI, (c) to (i) are enlarged images synthesized from the depth images up-sampled by Bicubic, ScSR, Zeyde, Edge-guided, WLDISR-D, WLDISR-R, and WLDISR-ALL schemes, respectively. Note that the PSNR values in subfigures from (c) to (i) are not the values of the enlarged images, but the quality values of entire VVIs. From Fig. 7, we can perceive annoying artifacts along the rim of hands, fingers and arms in the VVIs generated by Bicubic, Zeyde, and Edge-guided methods. By contrast, our proposed schemes have much clearer edges and fewer artifacts along the edges, and the visual quality of WLDISR-ALL scheme mostly resembles the reference VVI. Similar results can also be found for Café in Fig. 8 and Bookarrival in Fig. 9. The visual results further validate that our proposed schemes, considering different synthesis characteristics of different structures in depth images, are effective in improving the VVI quality and especially the quality of edge regions of the VVIs.

C. Comparisons on Computational Complexity

To evaluate the computation performance of our proposed methods, we implemented the proposed algorithms and benchmarks on Matlab R2014a. All the depth image SR experiments were run on a computer with an Intel I7 eight-core 4GHZ CPU, 32GB memory, and Windows 7 operating system. The testing methods except Bicubic, test sequences, and the frames to be up-sampled are the same as that in the long-term videos experiments in subsection III.A. Since the dictionaries are learned offline for the testing methods, we only need to compare the reconstruction time of the test sequences among different methods. The average computation time of super-resolving each frame is demonstrated in Fig. 10. It takes ScSR 358 seconds on average to up-sample a frame of a 3D sequence. ScSR runs slowest while Zeyde runs fastest. The computation time of the proposed schemes WLDISR-D, WLDISR-R, and WLDISR-ALL is 31.94%, 26.73%, and 27.57% respectively of the time ScSR costs. Compared with ScSR, the proposed schemes can reduce above 68.06% time complexities due to the time savings of smooth regions from using ‘AvgLR’. The reason that the three WLDISR schemes are of different running time is mainly because the change of weight t_E and w_E leads to different learned dictionaries and number of non-zero entries in sparse coefficients, respectively. Overall, the proposed schemes have much lower computational complexity than the benchmark schemes.

IV. KEY FACTORS ANALYSES ON WLDISR AND DISCUSSIONS

In this section, three key factors’ influences on the performance of the proposed schemes are analyzed. In addition, the role of the threshold for classifying edge and smooth regions is discussed.

A. Key Factors’ Effects on the VVI Quality

In this subsection, we analyze three key factors in dictionary training, i.e. dictionary size, variance threshold for patches in training, and patch size, which have important impacts on the VVI quality. Since the optimal way to acquire smooth patches of HR depth image is the averaging operation, i.e. ‘AvgLR’, there is actually no dictionary for the smooth patches. Therefore, we mainly analyze the impacts of three key factors for edge patches. Four sequences, including Café, Undodancer, Bookarrival, and Kendo, were tested. Ten consecutive frames of each sequence with two views were tested and the average
PSNR value of their corresponding VVIs was calculated and used. Four methods, ScSR, WLDISR-D, WLDISR-R, and WLDISR-ALL, were tested and analyzed. The configurations of these methods were as same as those of subsection III.A. Due to the long length of the manuscript, only results of Café and Undodancer are illustrated.

1) Effects of Dictionary Size: To analyze the relationship between the dictionary size and VVI quality with respect to the proposed algorithms, different dictionary sizes in the dictionary learning were set from 128 to 4096. Fig. 11 illustrates the relationship between the dictionary size and VVI quality for Café and Undodancer. The y-axis denotes the VVI quality measured with PSNR. The x-axis denotes the dictionary size and semi-log coordinate is employed in Fig. 11 for better observations. It can be observed that the average quality of VVIs increases with the dictionary size in general for different schemes for sequences Café and Undodancer. There are some fluctuations when the dictionary size increases for Undodancer. In addition, the WLDISR-ALL is not always the best one. It is mainly because the optimal weights for the dictionary learning and reconstruction are generated from the size with 512 and cannot guarantee the best for other sizes. Besides, the optimal weight is an average value of all sequences, which can improve the performance of most sequences rather than all sequences. Basically, large dictionary size may improve the quality of the reconstructed depth images and VVIs; however, it will also lead to higher computational complexity. So, it's recommended to select a dictionary size from 512 to 1024 to make a trade-off between the SR performance and computing complexity.

2) Effects of Patch Variance Threshold: Patch variance threshold determines the number and diversity of patches in the dictionary learning. To analyze the relationship between the patch variance threshold and the VVI quality, we tested different patch variance thresholds, denoted as t_{pv}, with the range of $\{t_{pv}|1 \leq t_{pv} \leq 60\}$. t_{pv} is used to remove the patches with variance below t_{pv} to control the structure information included in the training patches, which affects the number of the training patches. The larger t_{pv} is, the smaller number of patches is collected to train the dictionary. Fig. 12 illustrates the relationship between t_{pv} and the VVI quality with respect to different tested methods, where the x-axis is t_{pv} and y-axis is the VVI quality. It is observed that when t_{pv} is 1, which means more patches are included in training set, the VVI quality of the four schemes are almost the lowest for Café and Undodancer. According to Fig. 12, it is suggested that t_{pv} set as 10 for WLDISR-D, WLDISR-R, and WLDISR-ALL can achieve a relatively higher performance against other settings.

3) Effects of the Patch Size: The relationship between the patch size in dictionary learning and the VVI quality was also analyzed. We tested different patch sizes, $n \times n$, where $n \in \{5, 7, 9, 11\}$. Fig. 13 illustrates the relationship between the patch size and the VVI quality for the four test schemes, where the x-axis is the patch size n and y-axis is the VVI quality. From Fig. 13, we observe that the quality of VVI decreases as the patch size increases in general for the four schemes on the tested sequences. The reasons are two-folds. One is the
representation fidelity will decrease as the patch size increases. The other is the overlap regions decrease as the patch size increases. In this paper, patch size is set as 5. In addition, we can observe that the WLDISR-ALL is not the best one for the patch size $n \in \{7, 9, 11\}$. It is because the optimal weighted factors $\{t_E, w_E\}$ in dictionary learning and reconstruction are determined when patch size is 5×5. These weights may not be the optimal when patch size changes.

B. Further Discussions

In the WLDISR, the depth images are divided into edge and smooth regions, and then processed individually in the dictionary learning and reconstruction. The threshold of the edge detection module would determine the division of edge and smooth regions. If the threshold is higher, more patches would be classified as smooth patches. It will consequently affect the dictionary learning and reconstruction phases in WLDISR. However, it is noteworthy that the optimal weights are determined with given edge and smooth regions classification. Once the smooth and texture regions are changed by using another edge detection threshold, the optimal weights will change accordingly. Overall, the major concept of the proposed WLDISR schemes is to do depth image SR differently for edge and smooth regions, and it has been proved to be effective. Moreover, three or more kinds of regions may also be considered under the proposed WLDISR framework.

V. CONCLUSIONS

We proposed a Weighted Local sparse representation based Depth Image Super-Resolution (WLDISR) scheme aiming at improving the virtual view image quality of 3D video system. Local sparse representation and weighted sparse representation are jointly applied in both dictionary learning and reconstruction phases for edge and smooth regions in depth image super-resolution. Three schemes WLDISR-D, WLDISR-R, and WLDISR-ALL are proposed and derived based on individual optimization on dictionary learning and reconstruction modules and the joint optimization on the two modules. Experimental results and visual comparisons validate that our proposed three schemes outperform other state-of-the-art methods. In addition, we have discussed about three key factors in affecting the performance of our proposed schemes. Overall, our work has achieved favorable quality improvement and can provide a new perspective for depth image super-resolution in 3D sequences. In future, we may further investigate depth image enhancement in temporal domain.

APPENDIX

In the following text, we denote the HR and LR depth image/feature patch distortion measured by MSE as $\delta_{hi,j}$, and HR and LR VVI distortion/feature patch distortion measured by MSE as $\sigma_{hi,j}$, where $\phi \in \{h, l\}$, ‘h’ denotes HR, and ‘l’ denotes LR.

For HR depth image/VVI feature patches, HR depth image/VVI feature patches are acquired by subtracting the mean pixel value of HR depth image/VVI patches. x_i and m_i represents the original and reconstructed HR depth image feature patch, respectively, where m_i is reconstructed via sparse representation by HR dictionary D_h and sparse coefficient α_i. g_i, h_i are the original and reconstructed HR depth image patches, respectively. g_i^0 is the mean patch of HR depth image patch g_i with value of each pixel as g_i^0, and g_i^0 can be approximately regarded as the mean patch of the reconstructed HR depth image patches. We can derive

$$\Delta_{hi,j} = \|x_i - m_i\|^2_2 = \|x_i - D_h \alpha_i\|^2_2$$
$$\approx \|g_i - g_i^0 - (h_i - g_i^0)\|^2_2$$
$$= \|g_i - h_i\|^2_2 = \delta_{hi,j}. \quad (17)$$

Thus, the distortion of HR depth image feature patch $\Delta_{hi,j}$ equals to the distortion of HR depth image patch $\delta_{hi,j}$. v_i, m_i are the corresponding original and reconstructed HR VVI patches.
of depth image patches g_i, h_i, respectively. v_{i}^{0} is the mean patch of both the original and reconstructed HR VVI patches v_i, n_i, p_i and q_i represents the original and reconstructed HR VVI patch, respectively. Similarly, the HR VVI feature distortion patch can be derived as

$$\Delta h_{i,j} = \|p_i - q_i\|^2_2 = \|v_i - v_{i}^{0} - (n_i - v_{i}^{0})\|^2_2 = \|v_i - n_i\|^2_2 = \sigma_{h,i}. \quad (18)$$

The distortion of HR VVI feature patch $\Delta h_{i,j}$ also equals to the distortion of HR VVI patch $\sigma_{h,i}$.

Substitute (17) and (18) into (3), then we obtain

$$\Delta h_{i,j} = t_{\varphi} \Delta h_{i,j} + \epsilon_{h,i}. \quad (19)$$

It implies that (3) is applicable to the distortions of HR depth image/VVI feature patches for φ region, where $\varphi \in \{E, S, ALL\}$ represent edge, smooth regions and the entire image.

For LR depth image/VVI feature patches, experiments were conducted to establish the mathematical relationship between the LR depth image/VVI feature patch distortion $\Delta i_{i,j}/N_{i,j}$ and the LR depth image/VVI distortion $\delta_{i,j}/\sigma_{i,j}$, respectively. The reconstructed noise of the depth image in SR and VVI can be modeled as white noise model. Series of white noise with intensity $\{1, 2, 3, 4, 5, 6, 7\}$ were injected into the LR depth images/VVI. Series of LR depth images/VVI feature maps were generated from these noise-contaminated depth images/VVIs.

Fig. 14 demonstrates the relationship between $\delta_{i,j}/\sigma_{i,j}$ and $\Delta i_{i,j}/N_{i,j}$. The x-axis is θ_{Fea}, which denotes the MSE of LR feature map of depth/VVI images at φ region. The y-axis is θ_{Img}, which denotes the MSE of LR depth/VVI images at φ region. Two sequences, Kendo and Cafe, are demonstrated. The solid line and dotted line indicate the sequence Kendo and Cafe, respectively. The rectangle, diamond, and circle symbols denote the entire images, the edge, and smooth region, respectively. The solid and hollow markers denote the depth images and VVIs, respectively. From Fig. 14, it is observed that the MSE of images is strongly linear with the MSE of corresponding feature images both for depth images and VVIs. Moreover, the linear fitted lines from different sequences, regions, and types of images are overlapped. The linear model can be approximated as

$$\theta_{Img} \approx s \theta_{Fea}, \quad (20)$$

where s is the coefficient and is the same for different images, regardless of image types or contents, and for φ region, i.e. the entire image, edge region, and smooth region. The coefficient s seems only related to the high pass filter. For the high pass filter used in this paper, coefficient s approximates to 0.25. The constant term is omitted since it approaches to zero. The fitting R-square is 0.99. Thus, substitute (20) into (3) in the manuscript and we can obtain

$$s \Delta l_{i,j} = t_{\varphi} s \Delta l_{i,j} + \epsilon_{l,i}. \quad (21)$$

Thus, (21) can be transformed into

$$\Delta l_{i,j} = t_{\varphi} \Delta l_{i,j} + \epsilon_{l,i}/s. \quad (22)$$

Since ϵ_l approaches to zero, we can approximate ϵ_l/s to ϵ_l as they are both a small value approaching zero. Integrate (19) and (22), and we obtain

$$\Lambda_{\varphi,i} = F (\Delta \varphi,i) = t_{\varphi} \Delta \varphi,i + \epsilon_{\varphi}, \quad \varphi \in \{h, l\}. \quad (23)$$

Therefore, (4) is proved and valid.

REFERENCES

