
Joint Source-Channel Decoding of Polar Codes for HEVC
based Video Streaming

JINZHI LIN, Shenzhen Institute of Information Technology, China
YUN ZHANG and NA LI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
China
HONGLING JIANG, Beijing Information Science & Technology University, China

Ultra High-Definition (UHD) and Virtual Reality (VR) video streaming over 5G networks are emerging, in
which High-Efficiency Video Coding (HEVC) is used as source coding to compress videos more efficiently
and polar code is used as channel coding to transmit bitstream reliably over an error-prone channel. In this
paper, a novel Joint Source-Channel Decoding (JSCD) of polar codes for HEVC based video streaming is
presented to improve the streaming reliability and visual quality. Firstly, a Kernel Density Estimation (KDE)
fitting approach is proposed to estimate the positions of error channel decoded bits. Secondly, a modified
polar decoder called R-SCFlip is designed to improve the channel decoding accuracy. Finally, to combine the
KDE estimator and the R-SCFlip decoder together, the JSCD scheme is implemented in an iterative process.
Extensive experimental results reveal that, compared to the conventional methods without JSCD, the error
data-frame correction ratios are increased. Averagely, 1.07% and 1.11% Frame Error Ratio (FER) improvements
have been achieved for Additive White Gaussian Noise (AWGN) and Rayleigh fading channels respectively.
Meanwhile, the qualities of the recovered videos are significantly improved. For the 2D videos, the average
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) gains reach 14% and 34% respectively. For
the 360◦ videos, the average improvements in terms of Weighted-to-Spherically-uniform PSNR (WS-PSNR)
and Voronoi-based Video Multimethod Assessment Fusion (VI-VMAF) reach 21% and 7% respectively.

CCS Concepts: • Information systems → Multimedia streaming; • Mathematics of computing →
Coding theory; • Networks→ Mobile networks.

Additional Key Words and Phrases: joint source-channel decoding, HEVC, polar code, video streaming

ACM Reference Format:
Jinzhi Lin, Yun Zhang, Na Li, and Hongling Jiang. 2021. Joint Source-Channel Decoding of Polar Codes for
HEVC based Video Streaming. 1, 1 (November 2021), 23 pages. https://doi.org/10.1145/1122445.1122456

This work was supported in part by the National Natural Science Foundation of China under Grant 62172400 and 61902389,
in part by the Shenzhen Science and Technology Program under Grant JCYJ20180507183823045 and JCYJ20200109110410133,
in part by Guangdong International Science and Technology Cooperative Research Project under Grant 2018A050506063, in
part by Membership of Youth Innovation Promotion Association, Chinese Academy of Sciences under Grant 2018392, in
part by the Beijing Municipal Education Commission Applied Basic Research Project under Grant KM202011232022.
Authors’ addresses: J. Lin, Shenzhen Institute of Information Technology, Shenzhen, China, 518172; email: linjz@sziit.edu.cn;
Y. Zhang(corresponding author) and N Li, Shenzhen Institute of Advanced Technology, Chinese Academy ofSciences,
Shenzhen, China, 518055; emails: {yun.zhang, na.li1}@siat.ac.cn; H. Jiang, Beijing Information Science & Technology
University,Beijing, China, 10092; email: jhl@bistu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/11-ART $15.00
https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 Jinzhi Lin, et al.

1 INTRODUCTION
Ultra High-Definition (UHD) and Virtual Reality (VR) videos are becoming popular since they
are capable of providing more realistic visual experiences. Due to the huge amount of data vol-
ume, these videos are usually compressed effectively with highly efficient source coding, such as
H.265/High-Efficiency Video Coding (HEVC), which doubles the compression ratio as compared to
the H.264/Advanced Video Coding (AVC). Even so, wide bandwidth is required to stream the com-
pressed videos. Thanks to the development of network transmission, the 5th Generation (5G) mobile
transmission technologies significantly improve the transmission bandwidth and lower the delay.
However, there is still a big gap between the bandwidth provided by the existing communication
networks and the bandwidth required by UHD and VR video streaming.
Due to channel noises, signal interference, and multi-path fading, etc., bitstreams transmitted

over wireless channels are error-prone. Channel coding or Forward Error Correction (FEC) [50] is
applied for error controlling [20]. The polar code is one of the channel coding schemes adopted in
the 5G standard [1], which will probably be further utilized in 5G data plane as it is more suitable
for long codes and more effective for massive data coding. Conventionally, source and channel
en/decoding are optimized separately, which are expounded extensively by Shannon [45]. However,
Shannon’s separation theorems rely on some assumptions, including infinite code length, no delay
feedback, and infinite feedback capacity, which may not be guaranteed in a practical system. For
practical applications, separate source-channel en/decoding limits system performance [12]. The
redundancies hidden in the source coding are the extra extrinsic information for channel coding,
which can be utilized for improving channel decoding accuracy. Methods based on this idea are
Joint Source-Channel Decoding (JSCD) approaches.

For the emerging VR broadcasting application, the data rate of a 360◦ video that allows a full 360◦
high quality viewing experience requires about 400 Mb/s [53]. The reasonable motion-to-photon
delay is shall be below 15-20 milliseconds [42]. Even transmitting over 5G networks, the wide
bandwidth and low latency requirements are challenging to VR video streaming. To tackle these
challenges, viewport-specific [51] and tiled based [37] streaming schemes were developed. Besides,
another challenging issue is to handle the error-prone bitstreams to improve data transmission
efficiency. Automatic repeat requests could be employed for re-transmitting error bitstreams.
However, they consume extra communication resources. The error concealment/error resilience
[24] technologies provided by AVC and HEVC decoders reduce the negative impact from errors.
However, they brought an extra computational complexity and the quality gain from recovering was
still limited. Many researches show that, with the cost of consuming a few additional computation,
a JSCD method can improve data transmission efficiency without extra network bandwidths. Since
bandwidths are the bottleneck of a network and are hard to be expanded, the JSCD method suits for
a practical video streaming system. In this paper, we propose a novel JSCD scheme of polar codes
for HEVC based video streaming, which creatively improves the accuracy of the polar channel
decoding by exploiting the HEVC bitstreams syntax. The unique challenges of the proposed scheme
include: how to find the redundant source information from the HEVC coding standard and how
can they be utilized to improve the polar channel decoding performance. The proposed method is
specifically suitable for video playing end-devices with rich computation abilities, which at the
same time demands high definition videos recovered from remote streaming servers. To focus
on JSCD related processes, video encryption and adaptive video streaming technologies are not
considered in this paper. The contributions of this paper are given as follows:

• A Kernel Density Estimation (KDE) fitting approach for estimating positions of error channel
decoded bits from HEVC bitstreams is proposed, based on the analysis of HEVC syntax error
types and statistics of the error positions.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 3

• An algorithm called R-SCFlip for decoding data-frames 1 with polar codes is designed, which
improves the decoding accuracy compared to the original successive cancellation flip decoding
algorithm.
• An iterative JSCD scheme is proposed by combining the KDE error bit range estimator and
the R-SCFlip decoder, which improves reliability and visual quality of the video streaming.

The rest of this paper is organized as follows. Firstly, Section 2 reviews the related works.
Section 3 briefly introduces the fundamentals of polar codes and the corresponding successive
cancellation decoder. Then, the proposed JSCD scheme is presented in Section 4. Section 5 presents
the experimental results and analysis. Finally, Section 6 draws the conclusion.

2 RELATEDWORKS
2.1 General JSCD, JSCC and Cross-layer Schemes
There are a number of JSCD schemes for sensor data and controlling signal transmitting. Dumitrescu
et al. [14] dealt with Markov sequence sources. JSCD approaches were proposed for accelerating
both the Maximum A Posteriori (MAP) sequence decoding and the soft output Max-Log-MAP
decoding when the Markov sources satisfied Monge property. Two correlated sensor data encoded
by systematic LDPCs independently were considered in [28]. A JSCD decoder composed of two
LDPC decoders was proposed, where the encoded bits at the output of each LDPC decoder were
used as the a priori information at the other decoder. Abdessalem et al. [2] presented similar ideas
by considering relay cooperative communications. Methods of joint channel decoding and state
estimation for cyber-physical systems have been studied in [19].

Opposite to JSCD, Joint Source-Channel Coding (JSCC) combined source encoding with channel
FEC codes. JSCC schemes are usually demanded for designing the corresponding JSCD approaches.
Coupling with multimedia broadcasting, the authors have studied multilevel coded modulation
for providing Unequal Error Protection (UEP) JSCC approach in [48]. Liu et al. [35] formulated
error-resilient VR video transmission into JSCC optimization problem and solved it by coming
up a heuristic algorithm. In [5], a hybrid JSCC scheme with binary and non-binary turbo codes
was introduced, which utilized techniques including JSCD, regression-based extrinsic information
scaling, and prioritized 16-quadrature amplitude modulation. In fact, Hybrid Digital Analog (HDA)
coding can be viewed as another form of JSCC. Recently, some works using HDA coding for UHD
and 3-D videos transmission are emerging [33, 36]. Deep learning based approaches have been
investigated to improve the JSCC and JSCD [7, 31, 34], which brought interesting inspirations and
performance improvements.
In a cross-layer perspective, the basic principles and design highlights of JSCD considering

coupling multiple protocol layers for video communicated in a wireless network were discussed
in [13]. Qiwang et al. reviewed integrated physical-layer and cross-layer communication coding
systems for optimization of component elements to achieve green communications [9]. A cross-
layer optimization of caching and delivery control for minimizing the overall video delivery time
in two-hop relaying networks was investigated in [49]. Cross-layer optimization framework for
maximizing the total utility of 360◦ videos delivering in the multi-cast systems was proposed in [40].
Cross-layer design techniques in wireless multimedia sensor networks for energy conservation
were studied in [29]. Zhu et al. proposed a joint layered approach to achieve reliable and secure
JPEG-2000 image streaming over mobile networks [52]. More cross-layer design methods dedicated
in video streaming were presented in [10, 17].

1To distinguish the concepts of a “frame” in a video and a “frame” in the communication physical layer, the word “data-frame”
is used in the whole paper referring to the physical layer frame. Otherwise, “frame” refers to a video frame.

, Vol. 1, No. 1, Article . Publication date: November 2021.

4 Jinzhi Lin, et al.

2.2 Video Streaming Dedicated JSCD Schemes
Different kinds of H.264/AVC based JSCD schemes have been proposed in [22, 30, 32, 38, 47]. In
general, the last step of the video source coding is the arithmetic coding, such as variable length
coding and Context-Adaptive Binary Arithmetic Coding (CABAC) for H.264. It is straightforward to
practice JSCD by tight coupling arithmetic coding with channel coding. Based on MAP estimation,
Wang et al. [47] proposed a JSCD method for variable length coding and convolutional encoded
1-D Markov source, and applied it to decode motion vectors of H.264 coded video streams. In
[32], an iterative JSCD scheme for videos encoded by H.264 with CABAC entropy coding and
a rate-1/2 Recursive Systematic Convolutional (RSC) code was proposed. In this scheme, slice
candidates with different likelihoods were generated and checked for source semantic validation.
The bitstreams, corresponding to invalid slice candidates, were modified and fed back to the soft
output viterbi algorithm decoder to do channel decoding recurrently. This scheme was extended
in [38] by introducing a virtual checking method to accelerate the semantic verification process.
Hanzo et al. [22] presented various Short Block Codes (SBC) based iterative JSCD system design
for near-capacity H.264 source coded videos, and proposed a redundant source mapping scheme
that can improve the convergence behavior of SBCs. In [30], a sequential MAP JSCD scheme
was proposed. The scheme utilized forbidden symbols in arithmetic coding, semantics and syntax
validation checking and a priori probability estimation for syntax element sequences to implement
the core idea of JSCD. The above mentioned works focus on JSCD approaches dedicated to H.264.
As HEVC is designed to focus on increasing video resolution and parallel processing, the semantics
and syntax of HEVC are somehow different from its predecessor H.264. The existing methods of
detecting error bits in bitstreams for H.264 cannot be applied to HEVC directly.
HEVC related JSCD schemes can be found in [25, 41]. Perera et al. [41] designed a cross-layer

turbo decoder to make use of HEVC source redundancy in the form of exploiting slice header
semantics and field patterns. Specifically, a Slice-header-field Parsing and Correction (SPC) module
for checking the HEVC syntax was required. To implement SPC, algorithms of access unit boundary
identification and Network Abstract Layer (NAL) unit header fields analyzing and amending were
proposed in the paper. As a boundary identification algorithm for access units was used, the
reported error bit positions were always accurate. The disadvantage of this method is that it can
only be applied to a few numbers of semantic and syntax error types. In [25], not constrained to any
specific video coding standards and modeling the correlation inherent in compressed video signals
as a first-order Markov process, Huo et al. proposed a spatio-temporal iterative JSCD system.

2.3 Polar Code Related JSCD Schemes
Most existing JSCD schemes were developed based on the traditional channel codes, such as turbo
codes and Low-Density Parity-Check (LDPC) codes. However, only a few JSCD related studies were
on the latest polar codes adopted by the 5G communication standard. A polar code is constructed
by a channel polarization transform process which is completely different from the LDPC and turbo
codes. The existing JSCD schemes with LDPC or turbo codes are not suitable for polar codes. Jin et
al. [27] proposed a distributed JSCD scheme for tackling general correlated sources encoded by
systematic polar codes independently, and proposed a joint source-channel polarization scheme
by using a quasi-uniform systematic polar code [26]. A JSCD method for language-based sources
with polar encoding was exploited in [46]. Source redundancy was utilized by judging the validity
of the decoded words in the decoded sequence with the help of a dictionary. The scenario that
HEVC and polar codes are involved in source and channel coding respectively is not tackled in the
above mentioned works. As for JSCC related polar codes, Jin et al. [26] considered joint source and
channel polarization and Hadi et al. [21] utilized the channel polarisation property to achieve UEP.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 5

In summary, JSCD schemes for video streaming are different from conventional data streaming
since videos have large data volume and are compressed in lossy. It is required to develop JSCD by
considering the properties of both HEVC bitstream and polar code.

3 PRELIMINARIES OF POLAR CODES
Let a vector [𝑥1, · · · , 𝑥𝑁] be 𝑥𝑁1 . Consider to transmit 𝐾 bit information over the communication
channel, a polar code of length 𝑁 = 2𝑛, 𝑁 > 𝐾 with rate 𝑅 = 𝐾/𝑁 separates the 𝑁 synthetic
polarized channels into 𝐾 reliable and 𝑁 − 𝐾 unreliable ones, and encode the information bits
and frozen bits on them respectively. Denote I as the set containing the indices of the 𝐾 reliable
synthetic channels. The encoding process can be described as

𝑿 = 𝑼 ·𝐺 ⊗𝑛 (1)

where 𝑼 = 𝑢𝑁1 = [𝑢1, · · · , 𝑢𝑁] of length 𝑁 is the input data vector, containing 𝐾 information bits
at position 𝑖 ∈ I and 𝑁 − 𝐾 frozen bits that are set to zero. 𝑿 = 𝑥𝑁1 = [𝑥1, · · · , 𝑥𝑁] is the encoded
vector.𝐺 ⊗𝑛 is the generator matrix which is the 𝑛− 𝑡ℎ Kronecker product of the polarization matrix

𝐺 =

[
1 0
1 1

]
.

The original standard polar code decoding algorithm is Successive Cancellation (SC) decoder
proposed by Arikan [4]. Denote the received signal from channel as 𝒀 = 𝑦𝑁1 = [𝑦1, · · · , 𝑦𝑁] which
is the noisy version of 𝑿 . SC decoder tries to recover 𝑢𝑁1 via successively decoding 𝑢𝑖 in ascending
order of index 𝑖 . For 𝑢𝑖 , its LLR is computed by

𝐿(𝑢𝑖) = log
(
𝑃 (𝑢𝑖 = 0|𝒀 , 𝑢𝑖−11)
𝑃 (𝑢𝑖 = 1|𝒀 , 𝑢𝑖−11)

)
(2)

According to the sign of its LLR value and whether it is a frozen bit, 𝑢𝑖 is decoded as 𝑢𝑖

𝑢𝑖 =

{1 if 𝑖 ∈ I and 𝐿(𝑢𝑖) < 0
0 if 𝑖 ∉ I or 𝐿(𝑢𝑖) ⩾ 0 (3)

4 PROPOSED JOINT SOURCE-CHANNEL DECODING SCHEME
4.1 System Model
Fig. 1 depicts a video streaming system consists of source video compression, channel encoding,
transmission, channel decoding and video decoding. The input video sequence is firstly put into
a HEVC encoder, a sequence of syntax elements 𝑣 ℓ𝑣1 = [𝑣1, · · · , 𝑣ℓ𝑣] of length ℓ𝑣 is produced after
coding, where 𝑣𝑖 is a syntax element which is placed into a NAL unit. Then, these syntax elements
are mapped into a binary sequence 𝑠ℓ𝑠1 = [𝑠1, · · · , 𝑠ℓ𝑠] of length ℓ𝑠 , where 𝑠𝑖 is either 0 or 1. Next, the
entropy encoder CABAC compresses 𝑠ℓ𝑠1 to a bit sequence 𝑢ℓ𝑢1 = [𝑢1, · · · , 𝑢ℓ𝑢] of length ℓ𝑢 , where 𝑢𝑖
is also either 0 or 1. Before transmission, bit sequence 𝑢ℓ𝑢1 is encoded with a polar code channel
encoder, and the obtained encoded vector 𝑥 ℓ𝑥1 = [𝑥1, · · · , 𝑥ℓ𝑥] of length ℓ𝑥 is modulated and sent
through a wireless noisy channel. At the receiver side, the received signal vector 𝑦ℓ𝑦1 = [𝑦1, · · · , 𝑦ℓ𝑦]
is the result of 𝑥 ℓ𝑥1 corrupted by noise 𝒏. The goal of the whole decoding process at the receiver is
to recover 𝑢ℓ𝑢1 , 𝑠ℓ𝑠1 and 𝑣 ℓ𝑣1 as best as possible, the estimated value of them are denoted as 𝑢ℓ𝑢1 , 𝑠ℓ𝑠1 and
𝑣
ℓ𝑣
1 , respectively.
The goal of the polar decoder is to estimate 𝑢ℓ𝑢1 by maximizing a posteriori probability as

𝑢
ℓ𝑢
1 = argmax

�̃�
ℓ𝑢
1 ∈Bℓ𝑢

𝑃 (�̃�ℓ𝑢1 |𝑦
ℓ𝑦

1) (4)

, Vol. 1, No. 1, Article . Publication date: November 2021.

6 Jinzhi Lin, et al.

Binarizer Polar encoder

+

Polar decoderDebinarizer

CABAC
encoder

CABAC
decoder

Wireless
channel

HEVC
compressor

HEVC
decompressor

Input video
sequence

Output video

Semantic & syntax
verifier

1 0 1 0 1 1 100... 0 1 0 1 1 0... 1 0 1 1 0 0 101...

1 1 1 0 1 0 101 ...0 1 1 0 1 0 ...1 0 1 0 0 0 111 ...

n

Fig. 1. Wireless video streaming system model.

where Bℓ𝑢 is the set of all the bit sequences with a length of ℓ𝑢 . Using the Bayes’ rule, it can be
written as

𝑢
ℓ𝑢
1 = argmax

�̃�
ℓ𝑢
1 ∈Bℓ𝑢

𝑃 (𝑦ℓ𝑦1 |�̃�
ℓ𝑢
1)𝑃 (�̃�

ℓ𝑢
1)

𝑃 (𝑦ℓ𝑦1)
(5)

There are three terms in the right side of the equation: channel transition probability 𝑃 (𝑦ℓ𝑦1 |�̃�
ℓ𝑢
1)

depending on the physical characteristics of the communication channel, modulation method and
polar encoding; a priori probability 𝑃 (�̃�ℓ𝑢1) of bit sequence 𝑢

ℓ𝑢
1 determined by the distribution of

binary sequence 𝑠ℓ𝑠1 ; and the denominator 𝑃 (𝑦ℓ𝑦1) which is constant for all realizations of �̃�ℓ𝑢1 and
thus is insignificant in this maximization.
For source-channel separation decoding methodologies, 𝑃 (�̃�ℓ𝑢1) is unknown to the channel de-

coder, thus �̃�ℓ𝑢1 are assumed to be Independent and Identically Distributed (IID) and Bernoulli(0.5)
distribution is usually adopted [18]. However, for HEVC compressed video source, �̃�ℓ𝑢1 are corre-
sponding to 𝑠ℓ𝑠1 which are constrained by HEVC syntax elements 𝑣 ℓ𝑣1 . Not all �̃�

ℓ𝑢
1 ∈ Bℓ𝑢 are necessary

to be valid bit sequences satisfying HEVC semantic and syntax constraints. Information hidden in
𝑃 (�̃�ℓ𝑢1) can be utilized to improve the MAP decoding performance. To obtain a specific probability
distribution of �̃�ℓ𝑢1 by observing 𝑣 ℓ𝑣1 (�̃�

ℓ𝑢
1) is unpractical. Therefore, implementing JSCD via MAP

decoding is not feasible. In this paper, to make use of the extrinsic information from the syntax
elements, a model to estimate error bit location range based on HEVC semantic and syntax verifi-
cation (shown as the green blocks in Fig. 1) and an improved SCFlip polar decoder to utilize the
estimated ranges (shown as the yellow block in Fig. 1) are designed.

4.2 Error Bit Location Range Estimation
In HEVC, encoded bitstreams are organized in a bunch of NAL units separated (or synchronized)
by start codes. Each NAL unit [44] consists of a header and the associated payload data called Raw
Byte Sequence Payload (RBSP), where some logical syntax elements are presented together. The six
bits NALType field in the NAL header specifies the role of the unit and determines the format of
the unit’s RBSP. The syntax elements constructing all types of RBSPs are well defined in the HEVC
standard, along with some semantic constraints if necessary.
In a video streaming system, NAL units are further channel encoded into data-frames and

transmitted through noisy communication channels. At the decoder side, the HEVC decoder may
confront that some syntax elements are not compliant with the standard due to error bits. In this
case, syntax errors will be reported. Moreover, the decoded values of some syntax elements may

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 7

violate the semantics in standard, i.e., out of valid range, illegal values, undefined meaning, etc.,
then semantic errors may be reported as well.
Video decoding errors could be propagated and cumulated due to intra/inter predictive coding.

Information in the headers of NAL units is relatively important. Error bits inside them could cause
their following RBSP cannot be decoded properly, or even cause decoding corruption for some
referring units. As most percentages of a bitstream are data slices encoded by CABAC [44]. They
are extremely sensitive to bit errors due to context correlation and changing probabilities, which
cause desynchronization and value deviation problems. When the decoder reports semantic or
syntax errors in decoding a bitstream at some specific positions, they are not meant to be the exact
locations where the actual errors bits occur. Instead, the error bits may locate nearby. To overcome
this problem, a statistical approach for error bit location range estimation is proposed.
In the reference software HEVC test Model (HM) [39], there are many assertion statements

associated with all kinds of HEVC semantic and syntax validation. Generally, an assertion failure is
considered as a report of a semantic and syntax error. Table 1 lists the most common semantic and
syntax errors that the HM software may report in decoding bitstreams. For example, because HEVC
standard defines the first bit in a NAL unit’s header to be zero, if the HM software encounters a
non-zero value in that, it would report a forbidden_zero_bit ! = 0 semantic error.

Table 1. The most common semantic and syntax errors reported by the HM software.

Error type In head In RBSP Sem./Syn.
forbidden_zero_bit ! = 0 ✓ Semantic
PPS == null ✓ Semantic
invalid sliceQP ✓ Semantic
numAllocatedSlice ! = SliceIdx ✓ Syntax
invalid nalUnitType ✓ Semantic
bits not byte aligned ✓ ✓ Syntax
fifo_idx ⩾ fifo.size ✓ ✓ Syntax
end_of_slice_segment_flag ! = 1 ✓ Semantic
trailingNullByte ! = 0 ✓ Semantic
trailing_zero_8bits ! = 0 ✓ Semantic
rbsp_stop_one_bit ! = 1 ✓ Semantic

We conduct the following experiment. Flip a random bit of a bitstream deliberately, then put it
into the HM software for HEVC decoding. An assertion failure may be reported when the flipped
bit causes a semantic or syntax error. The position of the current bit being decoded were recorded.
Denote the recorded bit position and the actual flipped bit position as 𝑝 ′ and 𝑝 , respectively. Call
the difference between 𝑝 ′ and 𝑝 as Causality Position Deviation (CPD), denoted as:

Δ𝑝 = 𝑝 ′ − 𝑝 (6)
For a ground truth error bit location estimator, CPDs are always in the predicted ranges. This can

be done by predicting a larger range. However, for a practical estimator, the predicted ranges should
be as narrow as possible. Small slice sizes in HEVC encoding are associated with narrow predicted
ranges. However, it is inefficient to use a very small slice size, since it may include more slice
head overhead. The value of 100 bytes is used as the slice size, which is a trade-off achieved from
statistical experiments. We collected the statistic of CPDs of all kinds of assertion failures. Fig. 2
shows the empirical Cumulative Distribution Function (CDF) of CPDs for syntax error “fifo_idx ⩾
fifo.size” when bitstreams are encoded with slice size set to 100 bytes. According to which specific
parameter is currently being decoded, the errors are further divided into several categories, such as

, Vol. 1, No. 1, Article . Publication date: November 2021.

8 Jinzhi Lin, et al.

decodeSplitFlag, decodeCoeff, decodePredInfo, and others. In general, most of the CPDs are within
range [−600, 2000] and the ranges vary with categories.

-1000 0 1000 2000 3000 4000 5000 6000 7000

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

decodeSplitFlag

decodeCoeff

all together

decodePredInfo

Fig. 2. Empirical CDF of CPDs for syntax error “fifo_idx ⩾ fifo.size”.

Actually, the distributions of CPDs can be accurately fitted by the KDE method [43]:

𝑓ℎ (𝑥) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝐾

(𝑥 − 𝑥𝑖
ℎ

)
(7)

where 𝑥𝑖 , 𝑖 = 1 · · ·𝑛 are the sampled data, 𝑛 is the sampled data size, 𝐾 (·) is the kernel smoothing
function and Epanechnikov [15] function 𝐾 (𝑢) = 3

4
(
1 − 𝑢2

)
is used in this paper, ℎ is the bandwidth.

Utilizing experimental data, 𝑓ℎ (𝑥) for CPDs of different semantic and syntax errors can be obtained.
The estimator predicts the error bit location ranges as

𝑝𝐿𝐵 = 𝑝 ′ + 𝐹−1
ℎ
(𝜎𝐿𝐵),

𝑝𝑈𝐵 = 𝑝 ′ + 𝐹−1
ℎ
(𝜎𝑈𝐵),

𝐹ℎ (𝑥) = 1
𝑛

𝑛∑
𝑖=1
𝐺
(𝑥−𝑥𝑖

ℎ

)
,

𝐺 (𝑥) =
∫ 𝑥

−∞ 𝐾 (𝑡)𝑑𝑡

(8)

where 𝐹ℎ (𝑥) is the CDF of 𝑓ℎ (𝑥), 𝜎𝐿𝐵 and 𝜎𝑈𝐵 are the parameters to be configured, which determine
the possibility that the error bits located in the predicted range. To obtain a 0.95 possibility, 0.025
and 0.975 are used in this paper, respectively. The predicted range is denoted as [𝑝𝐿𝐵, 𝑝𝑈𝐵] by
indicating the lower and upper bounds of error bit position.

To implement the KDE model based error bit location estimator, a large number of CPD samples
are collected through experiments. By applying KDE fitting to these samples, the bandwidths and
distributions for different semantic and syntax errors are obtained. Next, the estimated ranges
are calculated according to equation (8). Table 2 gives the adopted range predictions and the
corresponding accuracy for different semantic and syntax errors. The predicted ranges of items
with ℎ indicated by ’-’ are not configured by KDE fitting, as there are not enough samples during the
experiments due to their rare occurring, and their [𝑝𝐿𝐵, 𝑝𝑈𝐵] values are simply set by the minimum
and maximum of their few corresponding samples respectively. Note that the error bit location
range estimator is previously established before running the JSCD process. There is no need to run
KDE fitting for each specific video during conducting JSCD.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 9

Table 2. Configuration of KDE parameters for common syntax errors (𝜎𝐿𝐵 = 0.025, 𝜎𝑈𝐵 = 0.975).

Error type ℎ [𝑝𝐿𝐵, 𝑝𝑈𝐵] Acc. (%)
forbidden_zero_bit ! = 0 - [𝑝 ′, 𝑝 ′] 100
PPS == null 8.32 [𝑝 ′ − 32, 𝑝 ′ + 11] 100
invalid sliceQP - [𝑝 ′ − 34, 𝑝 ′ − 2] 100
numAllocatedSlice ! = SliceIdx 1.11 [𝑝 ′ − 39, 𝑝 ′ − 25] 98
invalid nalUnitType - [𝑝 ′ − 27, 𝑝 ′ − 27] 100
bits not byte aligned - [𝑝 ′ − 56, 𝑝 ′ − 2] 100
fifo_idx ⩾ fifo.size (decodeSplitFlag) 42.84 [𝑝 ′ − 606, 𝑝 ′ + 1539] 95
fifo_idx ⩾ fifo.size (decodeSkipFlag) 36.78 [𝑝 ′ − 652, 𝑝 ′ + 555] 94
fifo_idx ⩾ fifo.size (decodePredMode) 53.13 [𝑝 ′ − 504, 𝑝 ′ + 598] 93
fifo_idx ⩾ fifo.size (decodePartSize) 39.79 [𝑝 ′ − 624, 𝑝 ′ + 848] 88
fifo_idx ⩾ fifo.size (decodeCoeff) 37.32 [𝑝 ′ − 366, 𝑝 ′ + 2012] 89
fifo_idx ⩾ fifo.size (decodeMergeIndex) 48.09 [𝑝 ′ − 715, 𝑝 ′ + 514] 94
fifo_idx ⩾ fifo.size (decodePredInfo) 32.15 [𝑝 ′ − 549, 𝑝 ′ + 1284] 89
fifo_idx ⩾ fifo.size (others) 2.93 [𝑝 ′ − 75, 𝑝 ′ + 8] 100
end_of_slice_segment_flag ! = 1 16.82 [𝑝 ′ − 423, 𝑝 ′ + 525] 92
trailingNullByte ! = 0 1.51 [𝑝 ′ − 781, 𝑝 ′ + 44] 94
trailing_zero_8bits ! = 0 104.34 [𝑝 ′ − 1067, 𝑝 ′ − 59] 94
rbsp_stop_one_bit ! = 1 20.07 [𝑝 ′ − 662, 𝑝 ′ + 405] 91

4.3 Range Specified Successive Cancellation Flip Decoding
In the standard SC polar code decoder, due to the sequential property, intermediate bit decoding
errors can propagate through the subsequent bits decoding. It was observed in [3] that when one or
more incorrect bit estimations happen, it can cause more incorrect estimations in the subsequent
decoding. The Successive Cancellation Flip (SCFlip) decoding [16] was proposed to find and flip the
first falsely decoded bit, hoping that its follow-up error bits caused by this incorrect estimation can
be corrected. In the original SCFlip decoder, bits to be flipped are determined by their LLR values,
which are the smallest ones among all the un-frozen bits. In fact, this operation is not guaranteed to
be true. The bit with the smallest LLR value is not necessary the first error bit to be flipped for the
next SC decoding trial. We can imagine that, when the SCFlip decoder searches bits to be flipped
only within a previously known range, where the actual first error bit may locate in, the decoding
performance can be improved. We call this range specified SCFlip decoding as R-SCFlip.

Given a polar code with length𝑁 for sending𝐾 information bits, in which 𝑟 CRC bits for checking
the validity of the decoded codewords are included. The sending codeword and received signal
are denoted as 𝑢𝑁1 and 𝑦𝑁1 , respectively. Algorithm 1 gives the pseudo-code of R-SCFlip, in that,
function SC

(
𝑦𝑁1 ,A, 𝑘

)
stands for the SC algorithm based on the received signal 𝑦𝑁1 and the set of

non-frozen bitsA, with bit 𝑢𝑘 flipped. Similar to the SCFlip decoder, R-SCFlip starts by performing
a standard SC process to gain the first estimation of 𝑢𝑁1 , as well as their corresponding LLR values
𝐿
(
𝑦𝑁1 , 𝑢

𝑖−1
1 |𝑢𝑖

)
. If 𝑢𝑁1 passes the CRC checking, the decoding finishes. Otherwise, R-SCFlip would

attempt to find out the 𝑇 most unreliable bits (denoteU as the set of the indices of them) within
the given range R according to 𝐿

(
𝑦𝑁1 , 𝑢

𝑖−1
1 |𝑢𝑖

)
. Then for every bit 𝑢𝑘 , 𝑘 ∈ U, R-SCFlip is given a

chance to do the SC decoding, in that 𝑢𝑘 is flipped with respect to its decoded result in the standard
SC algorithm, the flipped value of 𝑢𝑘 is fed forward to take part in calculating the LLRs of the
following decoding bits, thus affect the whole decoding result 𝑢𝑁1 . Again, if the newly decoded 𝑢𝑁1
passes the CRC checking, the decoding is completed. Otherwise, R-SCFlip continues the process
until all the 𝑇 chances have been tried out.
The difference between SCFlip and R-SCFlip lies in that the ranges to find the first error bit

for flipping are different. R-SCFlip identifies the most unreliable bits by searching the smallest
𝐿
(
𝑦𝑁1 , 𝑢

𝑖−1
1 |𝑢𝑖

)
values in the given range R, while SCFlip searches the whole range of the current

, Vol. 1, No. 1, Article . Publication date: November 2021.

10 Jinzhi Lin, et al.

Algorithm 1: The proposed R-SCFlip decoding.
Input :𝑦𝑁1 ,A,𝑇 , R
Output :�̂�𝑁

1
1

(
�̂�𝑁
1 , 𝐿

(
𝑦𝑁1 , �̂�𝑖−11 |𝑢𝑖

))
← SC

(
𝑦𝑁1 ,A, 0

)
;

2 if 𝑇 > 1 and CRC(�̂�𝑁
1) == failure then

3 U ← 𝑖 ∈ (A ∩ R) of𝑇 smallest
��𝐿 (

𝑦𝑁1 , �̂�𝑖−11 |𝑢𝑖
) ��;

4 𝑗 = 1;
5 while 𝑗 ≤ 𝑇 do
6 𝑘 ← U(𝑗) ;
7 �̂�𝑁

1 ← SC
(
𝑦𝑁1 ,A, 𝑘

)
;

8 if CRC(�̂�𝑁
1) == success then

9 break;
10 𝑗 = 𝑗 + 1;
11 end

decoding data-frame. As can be expected, if the actual first error bit does locate in the given range,
R-SCFlip has a higher possibility of flipping the exact error bits than SCFlip and tends to be more
likely to render the correct decoding result. Thus, R-SCFlip is expected to be able to correct more
data-frames than the SCFlip. Fig. 3 shows the simulation performances of SC, SCFlip, and R-SCFlip
decoders. The polar code related parameters configured in the simulations are the same as in the
experiments in section 5 given in Table 3. Two of the most common channel models, Additive
White Gaussian Noise (AWGN) and Rayleigh fading channels, are considered. The simulation
Signal-to-Noise Ratio (SNR) ranges for the two channels are set to 1.5 ∼ 2.6 and 13.5 ∼ 15.4 db
(measured in 𝐸𝑏/𝑁0), respectively. The fading channel is more realistic than the AWGN channel,
experiments in these two channel models help to prove that the proposal can work both in ideal
and practical channels. As can be seen from Fig. 3, the R-SCFlip decoder has the smallest Frame
Error Ratio (FER, known as the percentage of error data-frames) and Bit Error Ratio (BER). R-SCFlip
can significantly decrease the FER and BER for the SCFlip decoder in AWGN and fading channels.

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 61 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

FE
R

E b / N 0 (d b)

 S C
 S C F l i p
 R - S C F l i p

(a) FER, AWGN channel

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 61 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

BE
R

E b / N 0 (d b)

 S C
 S C F l i p
 R - S C F l i p

(b) BER, AWGN channel

1 3 . 6 1 3 . 8 1 4 . 0 1 4 . 2 1 4 . 4 1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 41 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

FE
R

E b / N 0 (d b)

 S C
 S C F l i p
 R - S C F l i p

(c) FER, fading channel

1 3 . 6 1 3 . 8 1 4 . 0 1 4 . 2 1 4 . 4 1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 41 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

BE
R

E b / N 0 (d b)

 S C
 S C F l i p
 R - S C F l i p

(d) BER, fading channel

Fig. 3. FER and BER of SC, SCFlip and R-SCFlip decoders in AWGN and Rayleigh fading channels.

4.4 Joint Range Estimation and R-SCFlip Decoding
By combining the KDE error bit location estimation and R-SCFlip polar decoding together, an
iterative JSCD scheme is proposed. As depicted in Fig. 4, initially, the channel encoded data-frames
are gathered by demodulating wireless channel signals. They are channel decoded by performing
SCFlip decoding, which is actually implemented by R-SCFlip decoding with the range 𝑅 set to
the whole data-frame [0, 𝑀𝐴𝑋]. By gathering all the R-SCFlip decoded data-frames together, the
raw video source encoded bitstream is obtained. As the bitstream is composed of NAL units, the

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 11

video decoder separates the bitstream into a list of NAL units 𝐿𝑁𝐴𝐿𝑠 by performing NAL boundary
identification.
The following process is to do JSCD decoding in an iterative form for the NAL units in 𝐿𝑁𝐴𝐿𝑠

one by one. The current NAL unit to be decoded is denoted as 𝑁𝐴𝐿𝑐𝑢𝑟 and is assigned to the
elements of 𝐿𝑁𝐴𝐿𝑠 iteratively by invoking Next(𝐿𝑁𝐴𝐿𝑠). If it is not null (meaning that there still
remains units to be processed), it is passed to perform JSCD. Otherwise, the iterative JSCD process
finishes. Firstly, 𝑁𝐴𝐿𝑐𝑢𝑟 is fed into the video decoder to do HEVC decoding. If there are no assertion
failures reported by the decoder, then the decoded source bits for 𝑁𝐴𝐿𝑐𝑢𝑟 are assumed to be correct
and move on to the next NAL unit. Otherwise, according to the reported assertion message and
the position of the current decoding bit in 𝑁𝐴𝐿𝑐𝑢𝑟 , the error type and error bit position 𝑝 ′ can
be deduced. This information is saved and compared with the result of the last JSCD decoding
process. If they are the same, it indicates that the last R-SCFlip channel decoding has failed to
correct the error bits, thus the conventional video decoding error concealment is performed and
then moves on to the next NAL unit to continue the JSCD process. If they are not the same, it
indicates that a new error situation caused by new encountered error bits happens, which means
that the information has not yet been utilized by R-SCFlip decoding in doing error bits correction.
Therefore, the error bit location range estimation and R-SCFlip decoding should be combined. The
data-frame 𝐹 corresponding to 𝑁𝐴𝐿𝑐𝑢𝑟 is firstly determined. The location range of possible error
bits in data-frame 𝐹 causing the assertion of failure is estimated as 𝑅 = [𝑝𝐿𝐵, 𝑝𝑈𝐵] through the
KDE fitting model according to the semantic and syntax error type, as depicted in the previous
subsection. With the given estimated range 𝑅, data-frame 𝐹 is fed into R-SCFlip decoder to do
channel decoding again. The newly generated 𝑁𝐴𝐿𝑐𝑢𝑟 after R-SCFlip decoding is put back to video
decoder to do HEVC decoding again, and a new JSCD process repeats. When all of the NAL units in
𝐿𝑁𝐴𝐿𝑠 pass HEVC decoding without assertion of failure or have been conducted error concealment,
the JSCD process finishes.

Obtain the list of NAL units LNALs from video bitstream recovered by
doing SCFlip decoding.

Success without
assertion failures?

Find the corresponding data-frame
F for NALcur , and run KDE to

estimate the error bit range as
R=[pLB, pUB].

 Do R-SCFlip decoding for F with
R=[pLB, pUB]

Are NALcur, Err
and p’ the same as the last

time report?

JSCD end

JSCD start

N

Y

Do HEVC decoding for NALcur

Do error concealment
for NALcur

Report the error NAL unit NALcur, error
type Err, error bit position p’

NALcur = Next(LNALs) == Null?

N

Y

YN

Fig. 4. Flow chart of the proposed iterative JSCD scheme.

, Vol. 1, No. 1, Article . Publication date: November 2021.

12 Jinzhi Lin, et al.

In the proposed iterative JSCD, the assertions of failures reported by the HEVC decoding are the
outcomes of source bitstream’s violation of HEVC semantic and syntax restriction and are essentially
the result of information redundancy hidden in HEVC standard. For R-SCFlip channel decoder, they
are viewed as external information, which is utilized to help improve channel decoding accuracy.
Specifically, in the proposed scheme, it is implemented in an iterative form of estimating position
ranges of error bits and doing R-SCFlip polar channel decoding back and forth. The performance of
the proposed iterative JSCD mainly relies on the accuracy of the error bit location range estimation
and the validation of the R-SCFlip channel decoder.

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, extensive experiments are designed to validate the proposed JSCD scheme for
transmitting HEVC encoded video bitstreams in the wireless channels with polar encoding. The
experimental settings are firstly presented. Then the channel decoding accuracy performance
is validated. Next, the video quality improvements are evaluated in terms of different metrics
and visual results. Moreover, the computational complexity of the proposal is analyzed and the
comparison with a related scheme is given as well.

5.1 Experimental Settings
To simulate polar code en/decoding, the open-source software AFF3CT[8] tool was used. To
en/decode VR videos in HEVC, the HM software [6] integrated with 360lib [23] was used. Four
360◦ video sequences (𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦, 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦, 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑃𝑜𝑙𝑒𝑉𝑎𝑢𝑙𝑡) representing VR
multimedia and two 2D regular videos (𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒 , 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠) were chosen for evaluation.
They were encoded in HEVC with four encoding Quantization Parameters (QP) 37, 32, 27, 22. Note
that, in the following tables, the names of the testing videos are shortened by the abbreviations
A.C., D.I.C., D.I.Cnt., P.V., B.D., and R.H. respectively. For wireless communications, the AWGN and
Rayleigh fading channels with different Signal-to-Noise Ratio (SNR) levels were considered.
Table 3 summarizes the experimental configurations. For the two 2D regular videos, they were

divided into 5 and 3 segments respectively (each segment consists of 100 frames), and all the
segments were tested in the experiments. The following experimental results for these two 2D
videos are the average values calculated from all of their corresponding segments. It is found that the
number of testing video frames has no significant influence on the JSCD schemes’ performances[47].
Therefore, for the 360◦ videos, the first 50 video frames are selected for QP 37 and 32, and the first
25 and 10 video frames are selected for QP 27 and 22, respectively. Detailed information of the
testing videos is summarized in Table 4, which gives the number of video frames, bitstream sizes
and numbers of NALs (The 2D videos are given in segments). All the experiments with the same
parameter configurations are run for 100 and 10 times for the 360◦ videos and the 2D videos, thus
all the presented data are the average values calculated from these individual simulations.

5.2 Analysis on Channel Decoding Accuracy
With the help of the proposed JSCD, the R-SCFlip channel decoder tries to decode data-frames
from the physical layer raw video bitstream by flipping error bits in the range predicted by the
KDE estimator. Consequently, it gives more chances to recover error decoded data-frames, leading
to reduce FER. Suppose 𝑁𝑓 𝑟𝑚 is the total number of data-frames, and 𝑁𝐸 is the number of error
frames without involving JSCD. Among these 𝑁𝐸 error frames, some of them are corrected after
performing JSCD. Denote the number of corrected frames as 𝑁 ′

𝐸
. Then, define Δ𝐹𝐸𝑅 = 𝑁

′
𝐸
/𝑁𝑓 𝑟𝑚

and Δ𝐸𝐶 = 𝑁
′
𝐸
/𝑁𝐸 as the FER improvement and error data-frame correction ratio, respectively,

which indicate the performances of the JSCD method in improving channel decoding accuracy.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 13

Table 3. Summary of the experimental settings.

Source coding Channel coding
Parameter Value Parameter Value

Video sequence
𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦, 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦,
𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑃𝑜𝑙𝑒𝑉𝑎𝑢𝑙𝑡 ,
𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒 , 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠

Polar codeword size (bit)
Data-frame size (bit)
Rate of polar code

16384
10240
0.5

Resolution 3840×1920, 1920×1080, 832×480 CRC size (bit) 8
Frames per second 30 Number of SCFlip trials 4
HEVC encoding QP 37, 32, 27, 22 Bandwidth (MHz) 20
GOP size 4 Modulation type BPSK
Intra period 32 Channel model AWGN, Rayleigh fading
Max. bytes per slice 100 SNR 𝐸𝑏

𝑁0
(dB) 2.0, 2.1, 2.2, 2.3 (AWGN)

14.6, 14.8, 15.0, 15.2 (fading)

Table 4. Detail summary of testing video sequences.

Seq. Number of video frames Bitstream size (bytes) Nubmer of NALs
QP=22 QP=27 QP=32 QP=37 QP=22 QP=27 QP=32 QP=37 QP=22 QP=27 QP=32 QP=37

A.C. 10 25 50 50 1,437,444 683,439 545,609 283,424 8,262 5,596 4,515 2,656
D.I.C. 10 25 50 50 1,200,762 958,512 866,025 445,354 6,839 7,412 7,754 4,449
D.I.Cnt. 10 25 50 50 2,099,940 1,614,957 1,337,263 564,394 9,148 10,973 10,878 5,493
P.V. 10 25 50 50 2,668,564 1,821,949 1,395,539 644,376 11,708 11,747 10,613 5,648
B.D.1 100 100 100 100 5,924,782 2,152,390 1,086,692 589,493 30,131 17,435 10,523 6,227
B.D.2 100 100 100 100 6,930,240 2,412,996 1,186,813 637,157 32,471 18,513 11,087 6,665
B.D.3 100 100 100 100 5,842,612 2,119,768 1,059,965 571,621 28,378 16,422 9,971 6,003
B.D.4 100 100 100 100 5,763,228 2,062,464 1,035,605 555,595 28,441 16,258 9,771 5,786
B.D.5 100 100 100 100 7,025,233 2,392,721 1,181,242 632,550 30,837 17,889 10,840 6,585
R.H.1 100 100 100 100 3,169,178 1,319,091 633,682 304,993 9,840 7,769 4,833 2,966
R.H.2 100 100 100 100 3,122,401 1,223,352 560,953 259,744 9,199 6,801 4,164 2,559
R.H.3 100 100 100 100 1,858,032 848,466 438,942 235,197 8,827 6,361 3,958 2,480

Fig. 5 and 6 give the FER, Δ𝐹𝐸𝑅 and Δ𝐸𝐶 results for the AWGN and Rayleigh fading channels
respectively. The black solid lines represent the FERs for different QPs. The red dash lines represent
FER improvements Δ𝐹𝐸𝑅s and the colorful lines with triangles represent the the error data-frame
correction ratios Δ𝐸𝐶s. As can be seen, for all the testing videos with different QPs, Δ𝐹𝐸𝑅s are
between 0.18% and 3.01% for AWGN channel and between 0.26% and 2.63% for the fading channel.
Δ𝐸𝐶s are between 25.08% and 73.41% for AWGN channel and between 28.02% and 65.16% for the
fading channel, which means that at least 25 percent of error data-frames have been corrected
with the help of JSCD. Take 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦 with QP 22 in AWGN channel as an example, as shown in
Fig. 5(a), the FER is 7.72% when 𝐸𝑏

𝑁0
= 2.0 dB, and Δ𝐹𝐸𝑅 is 2.80% which means that the FER can be

reduced to 7.72% − 2.80% = 4.92% after performing JSCD. Δ𝐸𝐶 is 36.20% which means that 36.20
percent of error data-frames have been corrected. Similarly, when 𝐸𝑏

𝑁0
= 2.1, 2.2, 2.3 dB, the Δ𝐹𝐸𝑅s

are 1.05%, 0.53%, 0.20% respectively, and the Δ𝐸𝐶s are 42.22%, 43.57%, 51.32% respectively. For QP
27, the FER improvements for 𝐸𝑏

𝑁0
= 2.0, 2.1, 2.2, 2.3 dB are 2.57%, 0.86%, 0.50%, 0.27% respectively,

and the correction ratios are 33.70%, 39.63%, 47.11% and 62.44% respectively. Results for QP 32 and
37 show similar performances.
Generally, as 𝐸𝑏

𝑁0
grows, more and more percentage of data-frames can be corrected, while less

FER improvements are obtained. In the perspective of QP, it seems that more error data-frames could
be corrected for larger QPs. The best case for Δ𝐹𝐸𝑅 lies in 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦 with 𝐸𝑏

𝑁0
= 2.3 dB and QP=37,

in that, 3.01% FER improvement has been achieved. The best case for Δ𝐸𝐶 lies in 𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒

, Vol. 1, No. 1, Article . Publication date: November 2021.

14 Jinzhi Lin, et al.

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3

4

5
6

7
8

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(a) 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3

4

5
6

7
8

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(b) 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3

4

5
6

7
8

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(c) 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3
4

5
6

7
8

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(d) 𝑃𝑜𝑙𝑒𝑉𝑎𝑢𝑙𝑡

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3
4

5
6

7
8

FE

R (
%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(e) 𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒

2 . 0 2 . 1 2 . 2 2 . 3 2 . 4
0
1

2
3
4

5
6

7
8

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(f) 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠

Fig. 5. The FER, Δ𝐹𝐸𝑅 and Δ𝐸𝐶 for the AWGN channel.

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0
2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 ∆ EC
 (%

)

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

(a) 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0
2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

 ∆ EC
 (%

)

(b) 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0
2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

 ∆ EC
 (%

)
(c) 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0

2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

 ∆ EC
 (%

)

(d) 𝑃𝑜𝑙𝑒𝑉𝑎𝑢𝑙𝑡

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0

2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0
2 0

3 0
4 0

5 0

6 0
7 0

8 0
9 0

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

 ∆ EC
 (%

)

(e) 𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒

1 4 . 6 1 4 . 8 1 5 . 0 1 5 . 2 1 5 . 4
0 . 5
1 . 0

1 . 5
2 . 0

2 . 5

3 . 0
3 . 5

4 . 0
4 . 5

FE
R (

%)

E b / N 0 (d b)

 F E R (Q P = 2 2)
 ∆F E R (Q P = 2 2)
 F E R (Q P = 2 7)
 ∆F E R (Q P = 2 7)
 F E R (Q P = 3 2)
 ∆F E R (Q P = 3 2)
 F E R (Q P = 3 7)
 ∆F E R (Q P = 3 7)

1 0
2 0

3 0
4 0

5 0

6 0
7 0

8 0
9 0

 ∆E C (Q P = 2 2)
 ∆E C (Q P = 2 7)
 ∆E C (Q P = 3 2)
 ∆E C (Q P = 3 7)

 ∆ EC
 (%

)

(f) 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠

Fig. 6. The FER, Δ𝐹𝐸𝑅 and Δ𝐸𝐶 for the Rayleigh fading channel.

with 𝐸𝑏
𝑁0

= 2.3 dB and QP=37, in that, 73.41% error data-frames have been corrected. Averagely, for
the sequences with different QPs and 𝐸𝑏

𝑁0
levels, 1.07% FER improvement has been achieved and

44.09% error data-frames have been corrected.
The proposed approach also works well in the fading channel. As shown in Fig. 6, it has the

similar performances as in the AWGN channel. The best case for Δ𝐹𝐸𝑅 lies in 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦
with 𝐸𝑏

𝑁0
= 14.6 dB and QP=22, in that, 2.63% FER improvement has been achieved. The best case for

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 15

Δ𝐸𝐶 also lies in 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦 with 𝐸𝑏
𝑁0

= 15.2 dB and QP=37, in that, 65.16% error data-frames
have been corrected. On average, 1.11% FER improvement has been achieved and 46.98% of the
error data-frames have been corrected. Overall, the scheme performs a little better in the fading
channel than in the AWGN channel.

5.3 VideoQuality Performance Evaluation
To evaluate the qualities of the 360◦ videos, Weighted-to-Spherically-uniform Peak Signal-to-Noise
Ratio (WS-PSNR) and Voronoi-based Video Multimethod Assessment Fusion (VI-VMAF)[11] are
utilized. On the other hand, PSNR and Structural SIMilarity (SSIM) are measured for the regular
2D videos. In this subsection, the proposed JSCD (denoted as “Pro.”) is mainly compared to the
conventional source-channel separated decoding scheme (denoted as “NoJ.”) and the proposed JSCD
scheme with channel decoded error bits’ range given as ground truth (denoted as “Pro_RGT” and as
“RGT” in the tables due to space limitation). In addition, the qualities of videos reconstructed from
the original HEVC encoded bitstreams are also given as the baseline for comparisons (denoted as
“Rec.”). For a specificmetric, if the values for “NoJ.”, “Pro_RGT” and “RGT” are𝐴, 𝐵 and𝐶 respectively,
then the performance improvements of “Pro_RGT” and “RGT” are calculated as Δ𝑃𝑟𝑜 = (𝐵 −𝐴)/𝐴
and Δ𝑅𝐺𝑇 = (𝐶 − 𝐴)/𝐴, respectively. In the following tables, Δ𝑃𝑟𝑜 and Δ𝑅𝐺𝑇 are denoted as the
performance improvements.

Tables 5 and 6 present the WS-PSNR and VI-VMAF results for the 360◦ videos in AWGN channel.
It can be seen that “Pro.” and “Pro_RGT” has improved all the video qualities significantly in all
cases of 𝐸𝑏

𝑁0
compared to “NoJ.”. Specifically, in terms of WS-PSNR, the best improvements lies in

𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦 with QP 27 for 𝐸𝑏
𝑁0

= 2.2 dB, which are (25.52 − 17.29)/17.29 × 100% ≈ 48% for “Pro.”
and (36.68 − 17.29)/17.29 × 100% ≈ 110% for “Pro_RGT”, as shown in Table 5. The “Avg.” and “All
Avg.” improvement values presented in the table are averaged from the four videos’ data. As we
can see, the overall average WS-PSNR improvements of “Pro.” for QP 22, 27, 32, 37 are 22%, 25%,
24% and 20%, respectively. In terms of VI-VMAF, as shown in Table 6, the biggest improvements
reach to (81.48 − 70.75)/70.75 × 100% ≈ 15% for “Pro.” for the 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦 at 𝐸𝑏

𝑁0
= 2.3 dB with QP

27, and (82.59 − 61.60)/61.60 × 100% ≈ 34% for “Pro_RGT” for the 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦 at 𝐸𝑏
𝑁0

= 2.2 dB
with QP 27. In average, the VI-VMAF improvements of “Pro.” for QP 22, 27, 32, 37 are 6%, 7%, 8%
and 7%, respectively.

Table 7 and 8 give the detailed PSNR and SSIM results for the 2D videos in AWGN channels. They
also show that “Pro.” and “Pro_RGT” work fine in improving 2D video qualities in all cases of 𝐸𝑏

𝑁0
compared to “NoJ.”. Specifically, in terms of PSNR, the best improvement for “Pro.” lies in𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠
with QP 37 for 𝐸𝑏

𝑁0
= 2.1 dB, which is (21.37− 16.31)/16.31× 100% ≈ 31%. The best improvement for

“Pro_RGT” lies in 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠 with QP 32 for 𝐸𝑏
𝑁0

= 2.1 dB, which is (27.30 − 15.02)/15.02 × 100% ≈
82%, as shown in Table 7. The overall average PSNR improvements of “Pro.” for QP 22, 27, 32, 37 are
7%, 13%, 20% and 17%, respectively. In terms of SSIM, as shown in Table 8, the biggest improvements
have reached to (0.68 − 0.37)/0.37 × 100% ≈ 84% for “Pro.” for 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠 at 𝐸𝑏

𝑁0
= 2.1 dB with QP

37 and (0.63 − 0.15)/0.15 × 100% ≈ 320% for “Pro_RGT” at 𝐸𝑏
𝑁0

= 2.0 dB with QP 32. In average, the
SSIM improvements of “Pro.” for QP 22, 27, 32, 37 are 24%, 34%, 37% and 39%, respectively.
For the Rayleigh fading channels, the proposed algorithms achieve similar results. Table 9 and

10 show that all the metrics are improved in all cases of the 𝐸𝑏
𝑁0

and QPs for both 360◦ and regular
2D videos. Compared to “NoJ.”, the overall average improvements of WS-PSNR and VI-VMAF for
the 360◦ videos are 19% and 6% respectively, and the overall average improvements of PNSR and
SSIM for the 2D videos are 15% and 37% respectively.

, Vol. 1, No. 1, Article . Publication date: November 2021.

16 Jinzhi Lin, et al.

Table 5. Average WS-PSNR for 360◦ videos in AWGN channels.

Seq.
𝐸𝑏
𝑁0
(dB)

QP=22 (dB) QP=27 (dB) QP=32 (dB) QP=37 (dB)
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

A.C.

2.3 23.99 30.14 36.15 43.99 26.30 35.49 41.54 42.34 32.94 37.32 39.62 41.17 29.49 35.25 37.95 39.72
2.2 16.44 21.20 28.17 43.99 20.50 27.95 34.87 42.34 26.47 32.62 37.68 41.17 26.78 33.08 36.20 39.72
2.1 13.10 15.47 19.16 43.99 16.03 20.21 26.10 42.34 18.21 25.63 32.71 41.17 20.58 25.98 32.99 39.72
2.0 10.86 11.75 15.45 43.99 12.95 13.77 17.45 42.34 14.73 18.02 24.26 41.17 16.25 18.87 26.23 39.72

D.I.C.

2.3 25.02 32.58 37.54 46.05 24.38 30.91 38.58 44.27 32.68 37.03 39.41 42.77 32.20 37.07 39.62 41.16
2.2 18.16 24.21 34.86 46.05 17.29 25.52 36.38 44.27 22.74 29.90 37.50 42.77 21.50 30.09 36.49 41.16
2.1 14.58 20.75 27.81 46.05 14.63 18.55 26.49 44.27 17.12 21.84 32.02 42.77 19.31 24.43 31.89 41.16
2.0 12.61 14.17 17.97 46.05 11.91 13.68 18.08 44.27 14.75 17.75 23.88 42.77 14.37 15.01 20.94 41.16

D.I.Cnt.

2.3 23.00 28.88 38.57 46.12 26.21 31.63 38.40 43.99 31.10 37.99 39.79 42.36 29.98 36.11 38.47 40.74
2.2 18.65 22.76 32.44 46.12 20.04 23.12 33.29 43.99 23.12 29.61 36.50 42.36 22.88 29.32 36.53 40.74
2.1 16.74 19.25 25.44 46.12 14.76 19.17 28.49 43.99 17.37 22.81 31.54 42.36 17.46 19.45 26.81 40.74
2.0 15.04 15.53 18.86 46.12 13.07 13.76 17.38 43.99 13.65 16.41 22.64 42.36 15.61 17.34 24.79 40.74

P.V.

2.3 18.62 22.74 32.69 42.06 20.80 29.75 37.61 39.39 28.22 32.59 35.86 37.80 24.94 30.41 33.21 36.34
2.2 16.76 19.77 24.58 42.06 15.51 21.56 31.35 39.39 20.28 27.07 33.47 37.80 19.20 23.80 32.24 36.34
2.1 11.22 14.41 16.38 42.06 13.01 15.77 22.47 39.39 15.30 20.64 27.42 37.80 16.68 20.07 28.02 36.34
2.0 13.48 15.94 16.01 42.06 11.86 12.29 14.07 39.39 13.20 14.56 20.69 37.80 15.45 16.05 20.68 36.34

Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇

Avg.

2.3 - 26% 60% - - 31% 60% - - 16% 24% - - 19% 28% -
2.2 - 26% 71% - - 34% 85% - - 29% 57% - - 29% 57% -
2.1 - 26% 60% - - 26% 77% - - 34% 82% - - 21% 62% -
2.0 - 10% 31% - - 7% 35% - - 18% 62% - - 9% 50% -

All Avg. - - 22% 56% - - 25% 64% - - 24% 56% - - 20% 49% -

Table 6. Average VI-VMAF [11] for 360◦ videos in AWGN channels.

Seq.
𝐸𝑏
𝑁0
(dB)

QP=22 (dB) QP=27 (dB) QP=32 (dB) QP=37 (dB)
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

A.C.

2.3 68.27 75.06 82.3 92.66 70.75 81.48 89.31 90.4 78.36 83.78 86.76 88.82 74.31 81.18 84.59 86.89
2.2 60.8 65.4 72.82 92.66 64.7 72.57 80.71 90.4 70.93 77.98 84.24 88.82 71.27 78.53 82.37 86.89
2.1 57.80 59.91 63.38 92.66 60.42 64.41 70.53 90.4 62.47 70.02 78.08 88.82 64.78 70.4 78.42 86.89
2.0 55.89 56.64 59.89 92.66 57.67 58.39 61.75 90.4 59.24 62.29 68.56 88.82 60.63 63.1 70.67 86.89

D.I.C.

2.3 69.37 77.93 84.07 95.55 68.68 75.96 85.40 93.05 78.05 83.42 86.49 90.98 77.48 83.47 86.76 88.80
2.2 62.42 68.50 80.70 95.55 61.60 69.90 82.59 93.05 66.97 74.78 84.01 90.98 65.70 75.00 82.73 88.80
2.1 59.11 64.95 72.41 95.55 59.15 62.79 70.96 93.05 61.44 66.05 77.26 90.98 63.53 68.74 77.11 88.80
2.0 57.38 58.74 62.24 95.55 56.78 58.31 62.34 93.05 59.26 62.03 68.16 90.98 58.92 59.49 65.14 88.80

D.I.Cnt.

2.3 67.24 73.62 85.39 95.65 70.65 76.80 85.17 92.66 76.18 84.64 86.98 90.42 74.88 82.25 85.26 88.24
2.2 62.89 66.99 77.76 95.65 64.25 67.36 78.78 92.66 67.36 74.45 82.74 90.42 67.11 74.12 82.78 88.24
2.1 61.08 63.47 69.82 95.65 59.27 63.39 73.18 92.66 61.67 67.04 76.69 90.42 61.76 63.67 71.31 88.24
2.0 59.52 59.97 63.09 95.65 57.77 58.38 61.68 92.66 58.28 60.77 66.87 90.42 60.04 61.64 69.12 88.24

P.V.

2.3 62.86 66.97 78.06 90.02 65.00 74.61 84.16 86.46 72.87 77.94 81.94 84.40 69.28 75.37 78.69 82.54
2.2 61.10 63.98 68.90 90.02 59.95 65.76 76.47 86.46 64.48 71.59 79.00 84.40 63.42 68.07 77.52 82.54
2.1 56.19 58.96 60.75 90.02 57.72 60.19 66.69 86.46 59.76 64.84 71.98 84.40 61.02 64.28 72.65 82.54
2.0 58.13 60.34 60.41 90.02 56.73 57.1 58.65 86.46 57.89 59.09 64.89 84.40 59.89 60.44 64.88 82.54

Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇

Avg.

2.3 - 10% 23% - - 12% 25% - - 8% 12% - - 9% 13% -
2.2 - 7% 21% - - 10% 27% - - 11% 22% - - 11% 22% -
2.1 - 6% 14% - - 6% 19% - - 9% 24% - - 6% 19% -
2.0 - 2% 6% - - 1% 7% - - 4% 14% - - 2% 13% -

All Avg. - - 6% 16% - - 7% 19% - - 8% 18% - - 7% 17% -

The experimental results show that the proposed JSCD scheme is not sensitive to the video
encoding QPs but to the channel noise levels. In addition, from the above tables, it can be seen that
the proposed JSCD is inferior to “Pro_RGT”, which means that higher video quality can be obtained
if higher accuracy of the error bit range estimation is achieved. It indicates that the proposed

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 17

Table 7. Average PSNR for 2D videos in AWGN channels.

Seq.
𝐸𝑏
𝑁0
(dB)

QP=22 (dB) QP=27 (dB) QP=32 (dB) QP=37 (dB)
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

B.D.

2.3 18.96 21.89 28.13 39.76 20.94 27.09 31.47 38.17 25.03 30.98 34.31 36.41 24.85 29.76 31.86 34.40
2.2 15.79 17.34 21.82 39.76 16.72 19.89 31.64 38.17 21.06 25.55 32.92 36.41 20.32 24.98 29.59 34.40
2.1 13.68 14.62 17.03 39.76 14.85 17.33 23.98 38.17 15.27 18.62 25.51 36.41 17.20 20.19 25.32 34.40
2.0 13.31 14.30 15.22 39.76 13.98 15.04 16.91 38.17 14.15 15.39 18.40 36.41 15.90 18.35 22.45 34.40

R.H.

2.3 21.75 24.61 30.19 39.32 27.27 32.00 34.72 35.19 21.09 24.75 27.80 32.03 27.77 28.20 28.20 29.20
2.2 18.44 19.37 27.85 39.32 17.41 19.53 29.30 35.19 21.21 26.45 30.53 32.03 19.69 23.64 28.36 29.20
2.1 13.59 13.90 21.33 39.32 15.97 16.01 24.60 35.19 15.02 19.60 27.30 32.03 16.31 21.37 26.14 29.20
2.0 13.18 13.20 13.98 39.32 13.66 13.73 16.94 35.19 13.22 14.45 19.90 32.03 14.86 16.52 20.04 29.20

Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇

Avg.

2.3 - 14% 43% - - 23% 37% - - 21% 35% - - 10% 14% -
2.2 - 7% 45% - - 15% 79% - - 23% 50% - - 22% 45% -
2.1 - 5% 41% - - 8% 58% - - 26% 74% - - 24% 54% -
2 - 4% 10% - - 4% 22% - - 9% 40% - - 13% 38% -

All Avg. - - 7% 35% - - 13% 49% - - 20% 50% - - 17% 38% -

Table 8. Average SSIM for 2D videos in AWGN channels.

Seq.
𝐸𝑏
𝑁0
(dB)

QP=22 (dB) QP=27 (dB) QP=32 (dB) QP=37 (dB)
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

B.D.

2.3 0.54 0.71 0.88 0.99 0.66 0.85 0.92 0.99 0.79 0.92 0.97 0.98 0.79 0.89 0.93 0.97
2.2 0.35 0.48 0.71 0.99 0.45 0.64 0.91 0.99 0.66 0.80 0.96 0.98 0.67 0.84 0.93 0.97
2.1 0.19 0.30 0.47 0.99 0.30 0.51 0.75 0.99 0.43 0.61 0.80 0.98 0.45 0.63 0.80 0.97
2.0 0.17 0.21 0.32 0.99 0.16 0.24 0.48 0.99 0.24 0.32 0.55 0.98 0.28 0.45 0.71 0.97

R.H.

2.3 0.69 0.78 0.87 0.99 0.81 0.93 0.98 0.99 0.65 0.77 0.87 0.98 0.87 0.89 0.89 0.96
2.2 0.54 0.62 0.83 0.99 0.48 0.6 0.9 0.99 0.64 0.82 0.91 0.98 0.63 0.77 0.93 0.96
2.1 0.25 0.32 0.66 0.99 0.35 0.46 0.78 0.99 0.34 0.58 0.81 0.98 0.37 0.68 0.85 0.96
2.0 0.14 0.13 0.31 0.99 0.13 0.14 0.46 0.99 0.15 0.27 0.63 0.98 0.22 0.37 0.61 0.96

Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇 Δ𝑃𝑟𝑜 Δ𝑅𝐺𝑇

Avg.

2.3 - 21% 42% - - 21% 29% - - 17% 28% - - 7% 10% -
2.2 - 24% 73% - - 33% 95% - - 25% 44% - - 24% 43% -
2.1 - 41% 157% - - 49% 135% - - 55% 109% - - 60% 101% -
2.0 - 10% 103% - - 31% 224% - - 51% 203% - - 64% 164% -

All Avg. - - 24% 94% - - 34% 121% - - 37% 96% - - 39% 79% -

Table 9. Average WS-PSNR and VI-VMAF for 360◦ videos in Rayleigh fading channels.

Metric
𝐸𝑏
𝑁0
(dB)

QP=22 QP=27 QP=32 QP=37
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

WS-
PSNR
(dB)

15.2 24.46 29.53 43.39 44.56 25.14 30.52 41.57 42.50 27.10 31.93 40.04 41.03 28.91 32.88 38.46 39.49
15.0 20.72 26.21 42.70 44.56 20.10 23.76 40.08 42.50 23.07 26.86 39.34 41.03 26.21 29.91 38.23 39.49
14.8 17.64 20.71 39.03 44.56 16.85 20.81 37.83 42.50 19.76 23.59 38.44 41.03 21.33 25.64 37.39 39.49
14.6 14.76 16.77 35.80 44.56 13.92 16.51 35.62 42.50 17.51 21.19 36.28 41.03 19.34 22.56 35.42 39.49

VI-
VMAF

15.2 68.77 74.36 91.83 93.45 69.49 75.50 89.35 90.61 71.63 77.16 87.31 88.63 73.65 78.29 85.25 86.59
15.0 64.92 70.65 90.89 93.45 64.30 68.03 87.37 90.61 67.31 71.36 86.39 88.63 70.65 74.80 84.95 86.59
14.8 61.93 64.91 85.99 93.45 61.18 65.01 84.44 90.61 63.97 67.85 85.22 88.63 65.53 70.03 83.87 86.59
14.6 59.27 61.11 81.87 93.45 58.52 60.87 81.64 90.61 61.80 65.39 82.47 88.63 63.56 66.78 81.39 86.59

JSCD could be further improved. The possible direction would be HEVC semantic and syntax error
checking, so as to improve the accuracy of error bit range estimation.

Fig. 7 and 8 give the visual results of the final recovered 360◦ videos in EquiRectangular (ERP) and
CubeMap (CMP) projections respectively, and Fig. 9 gives those of the two 2D videos. Obviously,
the proposed scheme can successfully recover several parts of the slices inside the video frames,
thus improving the whole video’s quality. It can be observed that, for some video frames, there are
gaps between “Pro” and “Pro_RGT” in terms of percentages of recovered slices, which proves that
the accuracy of error bit range prediction plays a key role in improving video quality.

, Vol. 1, No. 1, Article . Publication date: November 2021.

18 Jinzhi Lin, et al.

Table 10. Average PSNR and SSIM for 2D videos in Rayleigh fading channels.

Metric
𝐸𝑏
𝑁0
(dB)

QP=22 QP=27 QP=32 QP=37
NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec. NoJ. Pro. RGT Rec.

PSNR
(dB)

15.2 17.33 21.87 37.09 39.54 18.77 21.01 34.54 36.68 21.47 24.40 33.91 34.22 21.94 24.72 31.11 31.80
15.0 16.02 19.09 29.5 39.54 15.89 19.04 32.89 36.68 17.33 20.36 33.03 34.22 19.48 21.71 29.47 31.80
14.8 14.86 17.20 30.38 39.54 14.84 17.72 31.97 36.68 16.52 20.06 31.41 34.22 17.46 19.76 30.59 31.80
14.6 13.86 15.96 23.43 39.54 14.17 16.08 25.44 36.68 15.42 16.78 30.66 34.22 16.95 18.29 29.40 31.80

SSIM

15.2 0.50 0.68 0.98 0.99 0.54 0.64 0.97 0.99 0.67 0.76 0.98 0.98 0.67 0.77 0.95 0.97
15.0 0.35 0.55 0.88 0.99 0.37 0.56 0.93 0.99 0.49 0.64 0.97 0.98 0.60 0.68 0.92 0.97
14.8 0.27 0.43 0.90 0.99 0.33 0.48 0.93 0.99 0.42 0.61 0.95 0.98 0.48 0.61 0.94 0.97
14.6 0.21 0.36 0.74 0.99 0.25 0.38 0.82 0.99 0.32 0.41 0.93 0.98 0.38 0.48 0.92 0.97

(a) PSNR: 18.17 dB, SSIM: 0.74 (b) PSNR: 23.28 dB, SSIM: 0.91 (c) PSNR: 36.60 dB, SSIM: 0.98

(d) PSNR: 15.41 dB, SSIM: 0.66 (e) PSNR: 16.33 dB, SSIM: 0.70 (f) PSNR: 35.11 dB, SSIM: 0.98

Fig. 7. Visual results of 360◦ videos in ERP format. (a), (b), (c), (d), (e), (f) are from “NoJ.”, “Pro.”, “Pro_RGT”
schemes for𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦 and 𝑃𝑜𝑙𝑒𝑉𝑎𝑢𝑙𝑡 video sequences, respectively.(QP=32, AWGN channel, 𝐸𝑏

𝑁0
= 2.1

dB)

5.4 Complexity Analysis
Fig. 4 shows that there are iterative loops involved in the proposed JSCD scheme, which costs extra
computations depending on the number of loops in performing iterative JSCD. In the iterative JSCD
process, the R-SCFlip decoding for data-frames with error bits needs to be run recurrently and the
HEVC decoding for the corresponding NAL units needs to be run recurrently as well. Therefore, the
increased computational complexity can be measured by the increased number of JSCD iterations.

The experimental results are collected from the 360◦ videos streaming in Rayleigh fading channels.
Table 11 gives the average percentage of increased iterative decoding loops when applying JSCD
process, where 𝜂𝑐 is the percentage of channel data-frames needed to do extra R-SCFlip decoding
and 𝜂𝑠 is the percentage of NAL units need to do extra HEVC decoding. The overall increased
computational complexity can be measured by 𝜂𝑐 + 𝜂𝑠 . For lower 𝐸𝑏

𝑁0
, more data-frames tend to be

channel decoded incorrectly, and more iterative decoding loops are involved when performing JSCD.
In this case, more extra computations are required. Each loop involves one data-frame channel
decoding process and one NAL unit source decoding process. Each experiment with the same
configuration is run for 100 times. The number of iterative decoding loops is recorded and the
average value is computed. It is found that the worst-case happens when 𝑄𝑃 = 27 and 𝐸𝑏

𝑁0
= 14.6

dB, where the proposed JSCD has to run averagely about 85.97 times extra decoding loops. In
this case, the average total number of data-frames and NAL units are 1984 and 8932 (according to

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 19

(a) PSNR: 19.97 db, SSIM: 0.74 (b) PSNR: 28.52 dB, SSIM: 0.95 (c) PSNR: 37.00 dB, SSIM: 0.97

(d) PSNR: 24.80 dB, SSIM: 0.91 (e) PSNR: 25.98 dB, SSIM: 0.92 (f) PSNR: 36.35 dB, SSIM: 0.97

Fig. 8. Visual results of CMP projected 360◦ videos. (a), (b), (c), (d), (e), (f) are from “NoJ.”, “Pro.”, “Pro_RGT”
schemes for 𝐴𝑒𝑟𝑖𝑎𝑙𝐶𝑖𝑡𝑦 and 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝐼𝑛𝐶𝑖𝑡𝑦 sequences, respectively.(QP=32, AWGN channel, 𝐸𝑏

𝑁0
= 2.2 dB)

(a) PSNR: 22.91 dB, SSIM: 0.78 (b) PSNR: 27.17 dB, SSIM: 0.94 (c) PSNR: 37.70 dB, SSIM: 0.99

(d) PSNR: 20.43 dB, SSIM: 0.82 (e) PSNR: 28.62 dB, SSIM: 0.96 (f) PSNR: 31.66 dB, SSIM: 0.98

Fig. 9. Visual results of 2D videos. (a), (b), (c), (d), (e), (f) are “NoJ.”, “Pro.”, “Pro_RGT” schemes for
𝐵𝑎𝑠𝑘𝑒𝑡𝐵𝑎𝑙𝑙𝐷𝑟𝑖𝑣𝑒 (QP=32, AWGN channel, 𝐸𝑏

𝑁0
= 2.2 dB) and 𝑅𝑎𝑐𝑒𝐻𝑜𝑟𝑠𝑒𝑠 video sequences (QP=32, Fading

channel, 𝐸𝑏
𝑁0

= 15.0 dB), respectively.

the parameter configuration given in Table 4), respectively. Thus, the ratio of extra computation
overhead for channel and HEVC decoding is 4.35% and 0.94%, respectively, as specified in Table 11,
and the total computation overhead is 4.35% + 0.94% = 5.29%. According to Table 11, the overall
average computation overhead of 𝜂𝑐 +𝜂𝑠 is (2.85%+ 3.01%+ 2.95%+ 2.95%)/4 = 2.94%, which brings
in 19% and 6% video quality improvements for WS-PSNR and VI-VMAF respectively, according to

, Vol. 1, No. 1, Article . Publication date: November 2021.

20 Jinzhi Lin, et al.

the data from Table 9. Overall, the computational complexity results indicate that it is more worthy
to perform JSCD for larger 𝐸𝑏

𝑁0
.

Table 11. Average computational overheads. (Rayleigh fading channel)

𝐸𝑏
𝑁0

(dB) QP=22 (%) QP=27 (%) QP=32 (%) QP=37 (%)
𝜂𝑐 𝜂𝑠 𝜂𝑐 + 𝜂𝑠 𝜂𝑐 𝜂𝑠 𝜂𝑐 + 𝜂𝑠 𝜂𝑐 𝜂𝑠 𝜂𝑐 + 𝜂𝑠 𝜂𝑐 𝜂𝑠 𝜂𝑐 + 𝜂𝑠

15.2 0.90 0.29 1.19 1.04 0.22 1.26 1.05 0.20 1.25 1.10 0.18 1.28
15.0 1.50 0.48 1.98 1.72 0.37 2.06 1.74 0.33 2.07 1.80 0.30 2.10
14.8 2.44 0.78 3.22 2.78 0.60 3.38 2.77 0.53 3.30 2.80 0.46 3.26
14.6 3.78 1.21 4.99 4.35 0.94 5.29 4.36 0.83 5.19 4.44 0.73 5.17

Avg. 2.85 3.01 2.95 2.95

5.5 Comparison with Other JSCD Methodologies
The JSCD scheme in [41] (referred as “R. Perera et al. JSCD”) is selected for comparison, which
is compared with the “Pro_RGT” approach in this paper for fairness. In the experiments of “R.
Perera et al. JSCD”, a total of 60 data-frames (transport blocks) from Foreman video sequence
are considered. Numbers of error blocks that can be recovered are 60 × (20% − 3%) = 10.2 and
60 × (53% − 22%) = 18.6 for SNR (measured in 𝐸𝑠

𝑁0
) 11.5dB and 11.4dB, respectively. Thus, the

improvements are 10.2/(60 × 20%) = 85.00% and 18.6/(60 × 53%) = 58.49%, respectively. For
comparison, in our experiments, the total number of transmission data-frames is 853, which is
derived from 360◦ video sequence AerialCity with QP 32 in ERP projection. The average numbers
of error decoded frames are 43.51 and 52.56 under fading channels with SNR=11.5dB and 11.4dB,
respectively. “Pro_RGT” can correct 40.22 and 47.72 of them, respectively. Thus, the improvements
are 92.44% and 90.79%, respectively. Table 12 summarizes the comparison result. Obviously, our
“Pro_RGT” scheme shows better performance in terms of improvements in error data-frame recovery.
It proves that, compared to turbo decoders, the polar decoder can correct more data-frames when
the extrinsic information of positions of error bits is given.

Table 12. Comparisons of improvements of error data-frame recovery.

SNR (dB) R. Perera et al. JSCD in [41] Pro_RGT
11.5 85.00% 92.44%
11.4 58.49% 90.79%

In terms of the quality of visual experience, “R. Perera et al. JSCD” has given the SSIM results for
channel SNR from 11.375dB to 11.6dB in [41]. The best case turned out to be the Beergarden video
sequence with higher resolution. Therefore, only comparisons with this case are made here. The
experiments for “Pro_RGT” are also performed in Rayleigh fading channel with the corresponding
SNRs for the AerialCity in ERP. Fig. 10 gives the comparison. It shows that “Pro_RGT” produces
higher SSIM values in general, and significantly performs better in the small SNR range. The largest
performance gap lies in SNR=11.375dB, which equals about 25% improvement. These improvements
are owning to the higher ratio of error data-frame recovery provided by the polar decoder utilizing
HEVC semantic and syntax error checking.

6 CONCLUSIONS
We propose a novel Joint Source-Channel Decoding (JSCD) approach of polar codes for High-
Efficiency Video Coding (HEVC) based video streaming. According to the semantic and syntax

, Vol. 1, No. 1, Article . Publication date: November 2021.

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 21

1 1 . 3 5 1 1 . 4 0 1 1 . 4 5 1 1 . 5 0 1 1 . 5 5 1 1 . 6 0

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

SS
IM

C h a n n e l S N R (d b)

 R . P e r e r a e t . a l . J S C D
 P r o p o s e d J S C D _ R G T

Fig. 10. Comparisons of end user viewing experience.

errors reported by the HEVC decoder, the error bit positions in the input video bitstreams are
estimated by a Kernel Density Estimation (KDE) fitting approach. By using the estimated error
bit position ranges, an R-SCFlip polar decoding algorithm is presented. By combining the KDE
error bit range estimator and the R-SCFlip polar decoder together, an iterative JSCD methodol-
ogy is proposed. Experimental results show that the proposed scheme demonstrates significant
performance improvements compared to the scheme without JSCD. Averagely, 1.09% Frame Error
Ratio (FER) improvements have been achieved. The average Peak Signal-to-Noise Ratio (PSNR) and
Weighted-to-Spherically-uniform PSNR (WS-PSNR) gains reach 14% and 21% for 2D and 360◦ videos,
respectively. Experiments also indicate that the computational complexities paid for these improve-
ments are affordable. Compared with benchmark JSCD methods, the proposed JSCD outperforms
in recovering error data-frames, especially for small channel Signal-to-Noise Ratios (SNR).

REFERENCES
[1] 3GPP. 2018. Multiplexing and channel coding. Technical Specification (TS) 38.212. 3rd Generation Partnership Project

(3GPP). version 15.2.0.
[2] Marwa Ben Abdessalem, Amin Zribi, Tadashi Matsumoto, Elsa Dupraz, and Ammar Bouallègue. 2020. LDPC-based joint

source channel coding and decoding strategies for single relay cooperative communications. Physical Communication
38 (2020), 100947. https://doi.org/10.1016/j.phycom.2019.100947

[3] Orion Afisiadis, Alexios Balatsoukas-Stimming, and Andreas Burg. 2014. A low-complexity improved successive
cancellation decoder for polar codes. In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE,
2116–2120. https://doi.org/10.1109/ACSSC.2014.7094848

[4] Erdal Arikan. 2009. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-
input memoryless channels. IEEE Transactions on Information Theory 55, 7 (2009), 3051–3073. https://doi.org/10.1109/
TIT.2009.2021379

[5] Yogesh Beeharry, Tulsi P Fowdur, and Krishnaraj MS Soyjaudah. 2019. Performance of hybrid binary and non-binary
turbo decoding schemes for LTE and DVB-RCS standards. ECTI Transactions on Electrical Engineering, Electronics, and
Communications 17, 1 (2019), 1–13. https://doi.org/10.37936/ecti-eec.2019171.215363

[6] Frank Bossen, Davin Flynn, and Karsten Suhring. 2013. HM software manual. Document: JCTVC-M1010 (2013).
[7] Eirina Bourtsoulatze, David Burth Kurka, and Deniz Gündüz. 2019. Deep joint source-channel coding for wireless

image transmission. IEEE Transactions on Cognitive Communications and Networking 5, 3 (2019), 567–579. https:
//doi.org/10.1109/TCCN.2019.2919300

[8] Adrien Cassagne, Olivier Hartmann, Mathieu Leonardon, Kun He, Camille Leroux, Romain Tajan, Olivier Aumage,
Denis Barthou, Thibaud Tonnellier, Vincent Pignoly, et al. 2019. AFF3CT: A fast forward error correction toolbox!
SoftwareX 10 (2019), 100345. https://doi.org/10.1016/j.softx.2019.100345

[9] Qiwang Chen, LinWang, Pingping Chen, and Guanrong Chen. 2019. Optimization of component elements in integrated
coding systems for green communications: A survey. IEEE Communications Surveys & Tutorials 21, 3 (2019), 2977–2999.
https://doi.org/10.1109/COMST.2019.2894154

, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/10.1016/j.phycom.2019.100947
https://doi.org/10.1109/ACSSC.2014.7094848
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.37936/ecti-eec.2019171.215363
https://doi.org/10.1109/TCCN.2019.2919300
https://doi.org/10.1109/TCCN.2019.2919300
https://doi.org/10.1016/j.softx.2019.100345
https://doi.org/10.1109/COMST.2019.2894154

22 Jinzhi Lin, et al.

[10] Stefania Colonnese, Francesca Cuomo, Luca Chiaraviglio, Valentina Salvatore, Tommaso Melodia, and Izhak Rubin.
2017. CLEVER: A cooperative and cross-layer approach to video streaming in HetNets. IEEE Transactions on Mobile
Computing 17, 7 (2017), 1497–1510. https://doi.org/10.1109/TMC.2017.2774298

[11] Simone Croci, Cagri Ozcinar, Emin Zerman, Sebastian Knorr, Julián Cabrera, and Aljosa Smolic. 2020. Visual attention-
aware quality estimation framework for omnidirectional video using spherical Voronoi diagram. Quality and User
Experience 5, 1 (2020), 1–17.

[12] Pierre Duhamel and Michel Kieffer. 2009. Chapter 2 - Why joint source and channel decoding? In Joint source-channel
decoding: A cross-layer perspective with applications in video broadcasting. Academic Press, 13–30.

[13] Pierre Duhamel and Michel Kieffer. 2009. Joint source-channel decoding: A cross-layer perspective with applications in
video broadcasting. Academic Press.

[14] Sorina Dumitrescu. 2010. Fast joint source-channel decoding of convolutional coded Markov sequences with Monge
property. IEEE Transactions on Communications 58, 1 (2010), 128–135. https://doi.org/10.1109/TCOMM.2010.01.080091

[15] Vassiliy A Epanechnikov. 1969. Non-parametric estimation of a multivariate probability density. Theory of Probability
& Its Applications 14, 1 (1969), 153–158. https://doi.org/10.1137/1114019

[16] Furkan Ercan, Carlo Condo, and Warren J Gross. 2018. Improved bit-flipping algorithm for successive cancellation
decoding of polar codes. IEEE Transactions on Communications 67, 1 (2018), 61–72. https://doi.org/10.1109/TCOMM.
2018.2873322

[17] Shu Fan and Honglin Zhao. 2018. Delay-based cross-layer QoS scheme for video streaming in wireless ad hoc networks.
China Communications 15, 9 (2018), 215–234. https://doi.org/10.1109/CC.2018.8456464

[18] Maria Fresia, Fernando Peréz-Cruz, H. Vincent Poor, and Sergio Verdú. 2010. Joint Source and Channel Coding. IEEE
Signal Processing Magazine 27, 6 (2010), 104–113. https://doi.org/10.1109/MSP.2010.938080

[19] Shuping Gong, Liang Li, Ju Bin Song, and Husheng Li. 2017. Joint channel decoding and state estimation in cyber-
physical systems. IEEE Transactions on Wireless Communications 16, 11 (2017), 7560–7573. https://doi.org/10.1109/
TWC.2017.2750688

[20] 5G PPP Architecture Working Group et al. 2016. View on 5G architecture. White Paper, July (2016).
[21] Ammar Hadi, Emad Alsusa, and Arafat Al-Dweik. 2018. Information unequal error protection using polar codes. IET

Communications 12, 8 (2018), 956–961. https://doi.org/10.1049/iet-com.2017.1195
[22] L Hanzo et al. 2011. Near-capacity H.264 multimedia communications using iterative joint source-channel decoding.

IEEE Communications Surveys & Tutorials 14, 2 (2011), 538–564. https://doi.org/10.1109/SURV.2011.032211.00118
[23] Yuwen He, Xiaoyu Xiu, Yan Ye, et al. 2017. 360Lib software manual. Joint Video Exploration Team (JVET) of ITU-T SG

16 (2017).
[24] Xiem HoangVan and Byeungwoo Jeon. 2018. Joint layer prediction for improving SHVC compression performance and

error concealment. IEEE Transactions on Broadcasting 65, 3 (2018), 504–520. https://doi.org/10.1109/TBC.2018.2881355
[25] Yongkai Huo, Chuan Zhu, and Lajos Hanzo. 2013. Spatio-temporal iterative source-channel decoding aided video

transmission. IEEE Transactions on vehicular technology 62, 4 (2013), 1597–1609. https://doi.org/10.1109/TVT.2012.
2227072

[26] Liqiang Jin and Hongwen Yang. 2018. Joint source-channel polarization with side information. IEEE Access 6 (2018),
7340–7349. https://doi.org/10.1109/ACCESS.2017.2788887

[27] Liqiang Jin, Pei Yang, and Hongwen Yang. 2018. Distributed joint source-channel decoding using systematic polar
codes. IEEE Communications Letters 22, 1 (2018), 49–52. https://doi.org/10.1109/LCOMM.2017.2768036

[28] Mohamad Khas, Hamid Saeedi, and Reza Asvadi. 2018. Design and analysis of LDPC codes for joint source-channel
decoding of two correlated sensors. IET Communications 12, 8 (2018), 1003–1010. https://doi.org/10.1049/iet-com.2017.
1084

[29] Hasan Ali Khattak, Zoobia Ameer, Ud Ikram Din, and Muhammad Khurram Khan. 2019. Cross-layer design and
optimization techniques in wireless multimedia sensor networks for smart cities. Computer Science and Information
Systems 16, 1 (2019), 1–17. https://doi.org/10.2298/CSIS181115004K

[30] Hossein Kourkchi, William E Lynch, and M Omair Ahmad. 2018. A joint source channel arithmetic MAP decoder
using probabilistic relations among intra modes in predictive video compression. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 1768–1772. https://doi.org/10.1109/ICASSP.2018.8462054

[31] David Burth Kurka and Deniz Gündüz. 2020. DeepJSCC-f: Deep joint source-channel coding of images with feedback.
IEEE Journal on Selected Areas in Information Theory (2020). https://doi.org/10.1109/JSAIT.2020.2987203

[32] David Levine, William E Lynch, and Tho Le-Ngoc. 2010. Iterative joint source-channel decoding of H.264 compressed
video. Signal Processing: Image Communication 25, 2 (2010), 75–87. https://doi.org/10.1016/j.image.2009.12.006

[33] Peihao Li, Fengbao Yang, Jing Zhang, Yun Guan, Anhong Wang, and Jie Liang. 2020. Synthesis-distortion-aware hybrid
digital analog transmission for 3D videos. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.2990198

[34] Jinzhi Lin, Shengzhong Feng, Zhile Yang, Yun Zhang, and Yong Zhang. 2020. A Novel Deep Neural Network Based
Approach for Sparse Code Multiple Access. Neurocomputing 382 (2020), 52–63. https://doi.org/10.1016/j.neucom.2019.

, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/10.1109/TMC.2017.2774298
https://doi.org/10.1109/TCOMM.2010.01.080091
https://doi.org/10.1137/1114019
https://doi.org/10.1109/TCOMM.2018.2873322
https://doi.org/10.1109/TCOMM.2018.2873322
https://doi.org/10.1109/CC.2018.8456464
https://doi.org/10.1109/MSP.2010.938080
https://doi.org/10.1109/TWC.2017.2750688
https://doi.org/10.1109/TWC.2017.2750688
https://doi.org/10.1049/iet-com.2017.1195
https://doi.org/10.1109/SURV.2011.032211.00118
https://doi.org/10.1109/TBC.2018.2881355
https://doi.org/10.1109/TVT.2012.2227072
https://doi.org/10.1109/TVT.2012.2227072
https://doi.org/10.1109/ACCESS.2017.2788887
https://doi.org/10.1109/LCOMM.2017.2768036
https://doi.org/10.1049/iet-com.2017.1084
https://doi.org/10.1049/iet-com.2017.1084
https://doi.org/10.2298/CSIS181115004K
https://doi.org/10.1109/ICASSP.2018.8462054
https://doi.org/10.1109/JSAIT.2020.2987203
https://doi.org/10.1016/j.image.2009.12.006
https://doi.org/10.1109/ACCESS.2020.2990198
https://doi.org/10.1016/j.neucom.2019.11.066
https://doi.org/10.1016/j.neucom.2019.11.066

Joint Source-Channel Decoding of Polar Codes for HEVC based Video Streaming 23

11.066
[35] Zhi Liu, Susumu Ishihara, Ying Cui, Yusheng Ji, and Yoshiaki Tanaka. 2018. JET: Joint source and channel coding for

error resilient virtual reality video wireless transmission. Signal Processing 147 (2018), 154–162. https://doi.org/10.
1016/j.sigpro.2018.01.009

[36] Lei Luo, Taihai Yang, Ce Zhu, Zhi Jin, and Shu Tang. 2019. Joint texture/depth power allocation for 3-D video SoftCast.
IEEE Transactions on Multimedia 21, 12 (2019), 2973–2984. https://doi.org/10.1109/TMM.2019.2919474

[37] Duc V Nguyen, Huyen TT Tran, and Truong Cong Thang. 2020. An evaluation of tile selection methods for viewport-
adaptive streaming of 360-degree video. ACM Transactions on Multimedia Computing, Communications, and Applications
16, 1 (2020), 1–24. https://doi.org/10.1145/3373359

[38] Nguyen Quang Nguyen, William E Lynch, and Tho Le-Ngoc. 2010. Iterative joint source-channel decoding for
H.264 video transmission using virtual checking method at source decoder. In CCECE 2010. IEEE, 1–4. https:
//doi.org/10.1109/CCECE.2010.5575234

[39] JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11. 2020. HEVC test model (HM). https://hevc.hhi.fraunhofer.
de/HM-doc/

[40] Jounsup Park, Jenq-Neng Hwang, and Hung-Yu Wei. 2018. Cross-layer optimization for VR video multicast systems.
In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 206–212. https://doi.org/10.1109/GLOCOM.2018.
8647389

[41] Ryan Perera, Hemantha Kodikara Arachchi, Muhammad Ali Imran, and Pei Xiao. 2016. Extrinsic information modifi-
cation in the turbo decoder by exploiting source redundancies for HEVC video transmitted over a mobile channel.
IEEE Access 4 (2016), 7186–7198. https://doi.org/10.1109/ACCESS.2016.2619259

[42] Cristina Perfecto, Mohammed S Elbamby, Javier Del Ser, and Mehdi Bennis. 2020. Taming the latency in multi-user
VR 360°: A QoE-aware deep learning-aided multicast framework. IEEE Transactions on Communications 68, 4 (2020),
2491–2508. https://doi.org/10.1109/TCOMM.2020.2965527

[43] David W Scott. 2015. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons. https:
//doi.org/10.1007/978-3-642-21551-3_19

[44] ITU Telecommunication Standardization Sector. 2019. Recommendation ITU-T H.265: High efficiency video coding.
Ge-neva, Switzerland: Telecommunication Standardization Sector (2019).

[45] Claude E Shannon. 1948. A mathematical theory of communication. Bell system technical journal 27, 3 (1948), 379–423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[46] Ying Wang, Minghai Qin, Krishna R Narayanan, Anxiao Jiang, and Zvonimir Bandic. 2016. Joint source-channel
decoding of polar codes for language-based sources. In 2016 IEEE Global Communications Conference (GLOBECOM).
IEEE, 1–6. https://doi.org/10.1109/GLOCOM.2016.7841934

[47] Yue Wang and Songyu Yu. 2005. Joint source-channel decoding for H.264 coded video stream. IEEE Transactions on
Consumer Electronics 51, 4 (2005), 1273–1276. https://doi.org/10.1109/TCE.2005.1561855

[48] Yoshito Watanabe and Hideki Ochiai. 2016. A novel design and modeling of UEP-based compressed video broadcasting
with multilevel coded modulation. IEEE Transactions on Broadcasting 62, 3 (2016), 598–609. https://doi.org/10.1109/
TBC.2016.2576599

[49] Lin Xiang, Derrick Wing Kwan Ng, Toufiqul Islam, Robert Schober, Vincent WS Wong, and Jiaheng Wang. 2017.
Cross-layer optimization of fast video delivery in cache-and buffer-enabled relaying networks. IEEE Transactions on
Vehicular Technology 66, 12 (2017), 11366–11382. https://doi.org/10.1109/TVT.2017.2720481

[50] Zheng Yuan and Xinchen Zhao. 2012. Introduction of forward error correction and its application. In 2012 2nd
International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 3288–3291.

[51] Alireza Zare, Maryam Homayouni, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2019. 6K and 8K
effective resolution with 4K HEVC decoding capability for 360 video streaming. ACM Transactions on Multimedia
Computing, Communications, and Applications 15, 2s (2019), 1–22. https://doi.org/10.1145/3335053

[52] Xinglei Zhu and Chang W Chen. 2012. A joint layered scheme for reliable and secure mobile JPEG-2000 streaming.
ACM Transactions on Multimedia Computing, Communications, and Applications 8, 3 (2012), 1–23. https://doi.org/10.
1145/2240136.2240143

[53] Michael Zink, Ramesh Sitaraman, and Klara Nahrstedt. 2019. Scalable 360° video stream delivery: Challenges, solutions,
and opportunities. Proc. IEEE 107, 4 (2019), 639–650. https://doi.org/10.1109/JPROC.2019.2894817

, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/10.1016/j.neucom.2019.11.066
https://doi.org/10.1016/j.neucom.2019.11.066
https://doi.org/10.1016/j.sigpro.2018.01.009
https://doi.org/10.1016/j.sigpro.2018.01.009
https://doi.org/10.1109/TMM.2019.2919474
https://doi.org/10.1145/3373359
https://doi.org/10.1109/CCECE.2010.5575234
https://doi.org/10.1109/CCECE.2010.5575234
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://doi.org/10.1109/GLOCOM.2018.8647389
https://doi.org/10.1109/GLOCOM.2018.8647389
https://doi.org/10.1109/ACCESS.2016.2619259
https://doi.org/10.1109/TCOMM.2020.2965527
https://doi.org/10.1007/978-3-642-21551-3_19
https://doi.org/10.1007/978-3-642-21551-3_19
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/GLOCOM.2016.7841934
https://doi.org/10.1109/TCE.2005.1561855
https://doi.org/10.1109/TBC.2016.2576599
https://doi.org/10.1109/TBC.2016.2576599
https://doi.org/10.1109/TVT.2017.2720481
https://doi.org/10.1145/3335053
https://doi.org/10.1145/2240136.2240143
https://doi.org/10.1145/2240136.2240143
https://doi.org/10.1109/JPROC.2019.2894817

	Abstract
	1 Introduction
	2 Related Works
	2.1 General JSCD, JSCC and Cross-layer Schemes
	2.2 Video Streaming Dedicated JSCD Schemes
	2.3 Polar Code Related JSCD Schemes

	3 Preliminaries of Polar Codes
	4 Proposed Joint Source-Channel Decoding Scheme
	4.1 System Model
	4.2 Error Bit Location Range Estimation
	4.3 Range Specified Successive Cancellation Flip Decoding
	4.4 Joint Range Estimation and R-SCFlip Decoding

	5 Experimental Results and Analysis
	5.1 Experimental Settings
	5.2 Analysis on Channel Decoding Accuracy
	5.3 Video Quality Performance Evaluation
	5.4 Complexity Analysis
	5.5 Comparison with Other JSCD Methodologies

	6 Conclusions
	References

