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High Efficiency Intra Video Coding Based on
Data-driven Transform
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Abstract—In this work, we propose a high efficiency intra video
coding based on data-driven transform, which is able to learn
the source distributions of intra prediction residuals and improve
the subsequent transform coding efficiency. Firstly, we model
learning based transform design as an optimization problem of
maximizing energy compaction or decorrelation. A data-driven
Subspace Approximation with Adjusted Bias (Saab) transform
is analyzed and compared with the mainstream Discrete Cosine
Transform (DCT) on their energy compaction and decorrelation
capabilities. Secondly, we propose a Saab transform based intra
video coding framework with offline Saab transform learning.
Meanwhile, intra mode dependent Saab transform is developed.
Then, Rate-Distortion (RD) gain of Saab transform based intra
video coding is theoretically and experimentally analyzed in
detail. Finally, three strategies that apply the Saab transform to
intra video coding are developed to improve the coding efficiency.
Experimental results demonstrate that the proposed 8×8 Saab
transform based intra coding can achieve Bjønteggard Delta Bit
Rate (BDBR) from -1.19% to -10.00% and -3.07% on average as
compared with the mainstream 8×8 DCT based intra coding.
In case of variable size transform unit setting, the proposed
algorithm achieves BDBR from -0.17% to -6.09% and -1.80% on
average, which outperforms DCT-based and convolutional neural
network-based transform schemes.

Index Terms—Video Coding, Saab Transform, Transform Cod-
ing, Intra Prediction, Energy Compaction, Decorrelation.

I. INTRODUCTION

V IDEO data contributes the most data volume increase
in the era of big data due to its realistic representation

and wide applications. Video resolutions are expected to be
extended from High Definition (HD) to 4K/8K Ultra-HD
(UHD) in the near future. Meanwhile, High Dynamic Range
(HDR), holograph Three-Dimension (3D) and Virtual Reality
(VR) videos are booming as they are capable of providing
realistic, 3D and immersive visual experiences. In addition,
the usage of these video applications is boosting dramatically
with an increasing number of video devices connected to
the internet or Internet of Things (IoT), e.g., TV, laptops,
smartphones, surveillance cameras, drones, etc. Along with the
increase of both the usage and quality of videos, the volume
of global video data doubles every two years, which is the
bottleneck for video storage and transmission over network.
In the development of video coding standards, from MPEG-2,
H.264/Advanced Video Coding (AVC), H.265/High Efficiency
Video Coding (HEVC) [1] to the latest Versatile Video Coding
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(VVC) [2], the video compression ratio is doubled almost
every ten years. Although researchers keep on developing
video coding techniques in the past decades, there is a big
gap between the increasing ratios of the compression efficiency
and the global video data volume [3]. Coding optimizations
for higher efficiency are highly desired.

In the latest three generations of video coding standards,
hybrid video coding framework has been adopted, which is
composed of predictive coding, transform coding and entropy
coding. Firstly, predictive coding is to remove the spatial
and temporal redundancies of video content on the basis
of exploiting correlation among spatial neighboring blocks
and temporal successive frames. Higher prediction accuracy
leads to smaller and fewer residuals to be encoded, and thus
leads to a higher compression ratio. The predictive coding
can be classified as intra prediction or inter prediction based
on whether the reference pixels are from spatial or temporal
domains. Secondly, transform coding [4] that mainly consists
of transform and quantization is to transform residuals from
predictive coding to a spectral domain, and then quantize
the spectral coefficients to further exploit spatial and per-
ceptual redundancies. For example, Human Visual System
(HVS) is generally more sensitive to low frequency than high
frequency signals, where larger quantization scales could be
given. Finally, entropy coding exploits the statistical property
of transformed coefficients so as to approach its entropy.
Generally, it encodes symbols of higher probability with fewer
bits and encodes symbols of lower probability with more bits.
In this paper, we develop a data-driven transform to improve
the coding efficiency of the hybrid video coding framework.

Karhunen-Loéve Transform (KLT) is an ideal transform for
energy compaction and decorrelation, which requires calculat-
ing an autocorrelation matrix for each source input block. In
video coding, the autocorrelation matrix shall be encoded and
transmitted with associated transformed coefficients, which
brings additional bit rate overhead while using KLT in video
coding. The outstanding energy compaction and decorrelation
capabilities of KLT attract researchers to study data-driven
transform. Dvir et al. [5] constructed a new transform from an
eigen-decomposition of a discrete directional Laplacian system
matrix. Lan et al. [6] trained one dimensional KLT through
searching patches similar to the current block from recon-
structed frames with computational overhead. As a derivation
of the secondary transform, Koo et al. [7] learned a number
of non-separable transforms from both video sequences and
still images, and adopted five of them with the lowest Rate-
Distortion (RD) cost as the final transform. Cai et al. [8]
estimated the residual covariance as a function of the coded
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boundary gradient, considering prediction is very sensitive
to the accuracy of the prediction direction in the image
region with sharp discontinuities. Wang et al. [9] proposed
to optimize transform and quantization together with RD
Optimization (RDO). Zhang et al. [10] designed a highly
efficient KLT based image compression algorithm. Graph
Based Transform (GBT) was proposed as a derivation of the
traditional KLT in [11], which incorporated Laplacian with
structural constraints to reflect the inherent model assumptions
about the video signal. Arrufat et al. [12] designed a KLT
based transform for each intra prediction mode in Mode-
Dependent Directional Transform (MDDT). Takamura et al.
[13] proposed a non-separable mode-dependent transform and
created offline 2D-KLT kernels for different intra prediction
modes and Transform Unit (TU) sizes. In these studies,
researchers focused on generating the autocorrelation matrix
for the data-dependent KLT and optimizing the data-dependent
KLT with the constrained autocorrelation matrix. However, the
autocorrelation matrix is fixed for dynamic block residuals,
which may not be accurate. Meanwhile, the transform kernels
shall be transmitted to the client.

Discrete Cosine Transform (DCT) is similar to KLT on
energy compaction when the input signal obeys Gaussian
distribution. Due to its good energy compaction capability
and relatively low complexity, DCT has been widely used
in image and video coding standards, including MPEG-1,
MPEG-2, MPEG-4, H.261, H.262 and H.263. H.264/AVC and
later standards adopted Integer DCT (ICT), which replaced
complicated floating point multiplications in DCT with light
integer additions and shifts for lower complexity and hardware
cost. Since DCT transform kernels are fixed and difficult
to adapt to all video contents and modes, more advanced
DCT optimizations were proposed to improve the transform
coding efficiency through jointly utilizing multiple transforms
and RDO [14]. For HEVC intra video coding, an integer
Discrete Sine Transform (DST) [4] was further applied to
4×4 TU in luminance residuals. Han et al. [15] proposed
a variant of the DST named Asymmetric DST (ADST) by
considering the prediction direction and boundary information.
Their transform kernels were fixed.

Furthermore, due to the diversity of video contents and var-
ious distributions, multiple transform kernels from DCT/DST
families were jointly utilized to enhance the coding efficiency.
Zhao et al. [16] presented the Enhanced Multiple Transform
(EMT) by selecting the optimal transform from multiple candi-
dates based on the source properties and distributions. EMT is
intra mode dependent, where the DCT/DST transform kernels
were selected based on the direction of the intra angular
mode. As the coding efficiency of EMT is achieved at cost
of high computational complexity burden at the encoder side,
Kammoun et al. [17] proposed an efficient pipelined hardware
implementation. In addition, EMT was simplified as Multiple
Transform Selection (MTS) [18] and adopted in the VVC.
Zeng et al. [19] presented a two-stage transform, where coef-
ficients from all directional transforms at the first stage were
re-arranged appropriately and input to the secondary transform
for higher energy compaction. Considering that multi-kernel
transform and non-separable transform were able to capture

diverse directional texture patterns more efficiently, EMT [16]
and Non-Separable Secondary Transform (NSST) [20] were
combined to provide a better coding performance for VVC
standard. Similarly, Zhang et al. [21] presented a method on
Implicit-Selected Transform (IST) to improve the performance
of transform coding for AVS-3. Pfaff et al. [22] applied mode-
dependent transform with primary and secondary transforms
to improve transform coding in HEVC. These studies utilized
multiple transform kernels to improve the transform efficiency
at the cost of multiple pass transform computations. To reduce
the computational complexity, Park et al. [23] introduced
fast implementation methods for n-point DCT-V and DCT-
VIII. Garrido et al. [24] proposed a hardware architecture
to accelerate different types of DCT/DST (i.e. DCT-II, DCT-
VIII, and DST-VII) with variable unit sizes more effectively.
DCT is a pre-defined and fixed transform to approach KLT’s
performance for Gaussian distributed signals. However, this
Gaussian distribution assumption cannot be always guaranteed
due to diverse video contents and variable block patterns,
which enlarged the performance gap between DCT and the
optimal KLT. In addition, the “try all and select the best”
strategy, which tried multiple transform kernels for different
source distributions and selected the optimal one with RD cost
comparison, significantly increased the coding complexity.

Machine learning based transform is a possible solution to
have a good trade-off between the data-dependent KLT and the
fixed DCT, which can improve the video coding performance.
Lu et al. [25] proposed an end-to-end learning framework
for video compression, in which the residual encoder/decoder,
motion estimation, MV encoder/decoder were improved with
neural networks due to their powerful non-linear representation
ability. Yang et al. [26] proposed a Convolutional Neural
Network (CNN)-based non-linear transform for HEVC intra
coding, in which the CNN based transform was trained by
minimizing the loss from the reconstruction difference and
energy compaction. However, deep learning lacks of inter-
pretability and has higher computational complexity due to
intensive convolutional operations. Motivated by the analy-
ses on non-linear activation of CNN [27], [28], Kuo et al.
[29] proposed a data-driven Subspace Approximation with
Augmented Kernels (Saak) transform. The transform kernel
was KLT kernel augmented with its negative so as to re-
solve the sign confusion problem, which was derived from
the second-order statistics of input in one-pass feedforward
manner. Visual quality assessment for compressed images
was developed by exploiting the energy of Saak transformed
coefficients [30]. Furthermore, Kuo et al. [31] proposed an
interpretable and feedforward learning for data representation,
called Subspace Approximation with Adjusted Bias (Saab)
transform, which is statistics-centric and unsupervised. The
sign confusion problem was solved by shifting the transform
input with a relatively large bias [31]. Also, the Saab transform
interpreted the cascaded convolutional layers as a sequence of
approximating spatial-spectral subspaces. Following the Saab,
a Successive Subspace Learning (SSL) principle was proposed
to learn interpretable models for object recognition [32] and
classification [33].

The Saab transform is a data-dependent, multi-stage and
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non-separable transform, which can be applied to recognition
tasks as well as image representation due to its superior energy
compaction capability. In [34], Saab transforms were learned
from video coding dataset and had potentials to outperform
DCT on energy compaction capability while representing
variable block-size Intra prediction residuals. However, the
ultimate coding performance of using Saab transform shall
be further investigated.

In this work, we propose a Saab transform based intra
coding, which learns the source distributions of intra prediction
residuals and improves the transform coding efficiency. To our
best knowledge, it is the first work tries to apply the Saab
transform to improve the video coding efficiency. In addition
to the achieved coding gains, our major contributions are:
• The energy compaction and decorrelation capabilities of

Saab transform are compared with the DCT and KLT.
Then, RD performance for the Saab transform based intra
coding is analyzed theoretically and experimentally.

• We propose a data driven transform based video cod-
ing framework, which consists of off-line learning for
Saab transform kernel and Saab transform based video
encoder/decoder.

• Intra mode dependent Saab transform and three strategies
that integrate Saab and DCT kernels to intra video coding
are developed for higher coding efficiency.

The paper is organized as follows. Saab transform and its
performance are analyzed in Section II. A framework of Saab
transform based intra video coding, intra mode dependent
Saab transform and three integration strategies are illustrated
in Section III. Then, the RD performance of the Saab trans-
form based intra coding is analyzed in detail in Section IV.
Experimental results and analyses are presented in Section V.
Finally, conclusions are drawn in Section VI.

II. DATA-DRIVEN TRANSFORM AND ANALYSIS

A. Problem Formulation

Transform in image/video compression aims to improve
energy compaction and decorrelation for the transformed co-
efficients. Let x = {xi} be an input source, and it is forward
transformed to output y = {yk} in a spectral domain as

yk =

K−1∑
i=0

xiak,i or y = Ax, (1)

where ak,i is a transform element in the forward transform
kernel A. The inverse transform from yk to xi is presented as

xi =

K−1∑
k=0

ykuk,i or x = Uy, (2)

where uk,i is a transform element in the inverse transform
matrix U. U is an inverse matrix of A satisfying U = A−1

and UA = AU = I, where I is the identity matrix. If the
transform is orthogonal, it means the rows of transform matrix
are an orthogonal basis set and the inverse transform matrix
U satisfies U = A−1 = AT .

In the data-driven transform, the transform kernel A is
estimated from data samples D = [d0, ...,dT−1]. Generally,

Fig. 1. Diagram of learning and testing the one-stage Saab transform.

different transform kernels can be learned from subspaces
of data samples with different learning strategies. Given a
transform kernel set A, the optimal transform A∗ is selected
from A through solving the optimization problem expressed
as

A∗ = arg max
Ai∈A

M(y), (3)

where M(y) indicates a target transform performance of the
transformed coefficients y. The optimal transform could be
achieved by maximizing the value of M(y). In video cod-
ing, M (y) can be defined as but not limited to the energy
compaction or decorrelation capabilities, which relates to the
compression efficiency. For example, DCT is predefined as
an orthogonal transform for all block residuals. KLT kernel is
derived by maximizing the decorrelation, which varies for each
block residual. Although KLT outperforms DCT on energy
compaction and decorrelation, KLT based video coding needs
to transmit kernel information for each block, which causes a
large number of overhead bits. Saab transform is able to learn
statistics for a large number of blocks, which is a possible
solution to improve the coding performance of existing codecs.

B. Saab Transform

Saab transform [31] is conducted as a data-dependent, multi-
stage and non-separable transform in a local window to get a
local spectral vector. Diagram of testing and training the 2D
one-stage Saab transform is presented in Fig. 1, where the left
part is learning Saab transform kernels and the right part is
one-stage Saab transform.

Given an M ×N dimensional input x in the space RM×N ,
which is rearranged into a vector in lexicographic order as

x = [x00, x01, ..., x0,N−1, x1,0, x1,1, ..., x1,N−1

..., xM−1,0, ..., xM−1,N−1]T .
(4)
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Then, output transformed coefficients from Saab transform can
be computed as

yk =

K−1∑
j=0

ak,jxj + bk = aTk x + bk, (5)

where ak are transform kernels and bk is the bias, K=M×N ,
k = 0, 1, ...,K − 1. In Saab transform, DC kernel and AC
kernels are composed of ASaab={ak}K−1

0 and b={bk}K−1
0 ,

which are unsupervisedly learned from the training dataset
D = [d0, ...,dT−1], as illustrated at the left part of Fig. 1. The
number of samples in the training dataset, i.e., T , is around
60K. y is generally organized as a coefficients grid. In the
forward Saab transform, for input x in the space RM×N , the
DC and AC coefficients for y are computed separately as
• DC Coefficient: The DC coefficient is computed with

y0 = 1√
K

K−1∑
j=0

xj + b0, where DC kernel a0 =

1√
K

(1, ..., 1)T and the corresponding bias b0 = 0.
• AC Coefficients: Firstly, z′ is computed as z′ = x −

(aT0 x+ b0)1, where 1 = c/||c||, and c = (1, 1, · · · , 1, 1)
is the constant unit vector. Then, AC coefficient is

computed as yk =
K−1∑
j=0

ak,jz
′
j + bk = aTk z′ + bk. AC

kernel ak is the eigenvectors wk of the covariance matrix
C = E{ZZT }, where Z = [z0, ..., zt, ..., zT−1] and
z = d−(aT0 d+b0)1 are derived from the training dataset
D. The corresponding bias is bk = max

d
||d||.

Since one-stage Saab transform is orthogonal [31], the
inverse Saab transform kernel USaab is the transpose of the
forward Saab transform kernel, noted as USaab = ATSaab.
The vector y is inversely transformed into x′ with xk

′ =
ak
′({yk}K−1

1 − {bk}K−1
1 ) + y0, where ak

′=[a1,k, a2,k, ...,
aK−1,k], k = 0, 1, ...,K − 1.

One-stage Saab transform can be regarded as a combination
of KLT and DCT. The DC coefficient of one-stage Saab
transform equals to the DC coefficient of DCT. The AC
coefficients can be regarded as the first K-1 elements from a
variant KLT, where a bias is added to all input elements before
transform. Thus, one-stage Saab transformed coefficients can
be regarded a combination of DC coefficient from DCT and
AC coefficients from a variant KLT. In this case, input source
distribution, such as directionality of intra prediction residuals
in Section III-B, can be reflected by AC coefficients of the
Saab transform. In addition, multi-stage Saab transform [31]
can be built by cascading multiple one-stage Saab transforms
to extract high-level features. Similarly, multi-stage inverse
transform is derived correspondingly by cascading multiple
one-stage inverse Saab transforms. To solve the sign confusion
problem, the input of the next stage is shifted to be positive
by the bias. In this paper, we explore the potentials of Saab
transform for video representation and coding.

C. Energy Compaction and Decorrelation Capabilities of
Saab Transform

In video compression, one discipline of transform is to save
bits by transforming input x to frequency domain with fewer

Fig. 2. Energy compaction E(y) comparison among KLT, DCT and Saab
transforms.

non-zero elements, which is noted as energy compaction. The
energy compaction is mathematically defined as [35]

E(y) =

i∑
k=0

y2
k

σ2
x

, (6)

where σ2
x is the variance of the input x and i is the number

of coefficients. Thus, we shall compare the energy compaction
capability of 8×8 transforms for video coding, including KLT,
DCT, one-stage Saab transform and two-stage Saab transform.

In case of two-stage Saab transform, a 4×4 transform
was cascaded with a 2×2 transform kernel to form a 8×8
transform. We first mapped one 4×4 subblock to one DC
and 15 AC coefficients. Afterwards, we mapped a spatial-
spectral cuboid, which had 2×2 dimensions in spatial and 16
dimensions in spectral domain, to a spectral vector with 64
dimensions. Such that, the two-stage Saab transform output
one DC and 63 AC coefficients. In training, at the first stage
4×4 Saab transform, 15 AC kernel elements were learned
from conducting Principal Components Analysis (PCA) on
vectors with 16 elements, which were re-arranged from 4×4
sub-blocks with DC components removed. At the second stage
2×2 Saab transform, 63 AC kernel elements were learned from
conducting the PCA on vectors with 64 elements that were re-
arranged from a 2×2×16 spatial-spectral cuboid with the DC
component removed.

For fair comparison, both the one-stage (denoted as “Saab
Transform [8×8]”) and the two-stage Saab transform (denoted
as “Saab Transform [4×4, 2×2]”) were learned from over
70K 8×8 luminance block residuals of “Planar” mode col-
lected from encoding the video sequence “FourPeople” with
Quantization Parameters (QPs) in {22, 27, 32, 37} in HEVC.
Blocks of “Planar” mode were analyzed because “Planar”
mode had the highest probability of being selected as the
best among all 35 Intra modes [36]. Only one Saab transform
was trained offline and applied to transform all blocks in
“Saab Transform [8×8]” and “Saab Transform [4×4, 2×2]”,
respectively. Then, another 500 8×8 block residuals were
randomly selected to compute the energy compaction of KLT,
DCT and the two Saab transforms. Fig. 2 shows the energy
compaction E(y) comparison among KLT, DCT, the one-stage
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TABLE I
DECORRELATION COST C(y) COMPARISON AMONG KLT, DCT AND SAAB

TRANSFORMS.

Sequence QP Decorrelation cost C(y)

DCT Saab Transform KLT[8×8] [4×4,2×2]

BasketballDrill

22 581.78 574.26 582.46

0

27 1453.53 1309.17 1357.91
32 3266.85 2691.37 2769.59
37 5886.47 4574.13 4802.21

RaceHorses

22 588.19 586.50 591.71
27 1385.87 1361.44 1382.41
32 3911.97 3814.71 3887.13
37 8281.33 7818.34 8148.87

FourPeople

22 358.67 371.54 381.89
27 1042.21 1010.10 1054.60
32 1348.89 1331.15 1394.65
37 2842.04 2691.33 2950.05

Average 2578.98 2344.50 2441.96

Saab transform and two-stage Saab transform, and we can
have the following two key observations: 1) There is a large
gap between the KLT and DCT on energy compaction, since
KLT is specified for each block and DCT is fixed for all
blocks. Theoretically, DCT’s energy compaction may approach
to that of KLT for Gaussian distributed signals. However, this
condition is not always satisfied in practical when encoding
various video contents. 2) The one-stage and two-stage 8×8
Saab transforms, whose kernels are also fixed transform and
learned offline, perform a little better than DCT in energy
compaction. Therefore, 8×8 Saab transform has the potential
to improve the coding efficiency of the HEVC.

Another discipline of transform in video coding is removing
redundancy or correlation of the input signals x via transform,
i.e., decorrelation. To evaluate the decorrelation capability of
a transform, we measure the decorrelation cost of transformed
coefficients y with its covariance as

C(y) =
∑
i 6=j
|cov(yi, yj)|

=
∑
i 6=j
|E{(yi − µi)(yj − µj)}|, 0 ≤ i, j ≤ K − 1

,

(7)
where cov(yi,yj) is the covariance between yi and yj , i 6= j. µi
and µj are the mean of yi and yj . Smaller C(y) value indicates
a better decorrelation capability of a transform. The value of
C(y) in the transform domain of KLT is 0, which means yi
and yj are completely independent and their correlation is 0,
as i 6= j. In other words, redundancy is minimized as 0 among
the elements yi in the transformed coefficients.

Experimental analyses on the decorrelation capability of
one-stage Saab transform, two-stage Saab transform and D-
CT for 8×8 block residuals were performed. Saab trans-
form kernels were learned from three video sequences in
{“BasketballDrill”, “RaceHorses”, “FourPeople”}. For each
video sequence, the value of C(y) was computed for 500 of
block coefficients randomly selected in the transform domain
of each transform. As shown in Table I, the average decorre-
lation costs C(y) of KLT, one-stage Saab transform, two-stage
Saab transform and DCT are 0, 2344.50, 2441.96 and 2578.98.
Lower C(y) value indicates better decorrelation performance.
We can have the following three findings: 1) the decorrelation

Fig. 3. Framework of the Saab transform based intra coding.

cost C(y) of KLT is 0, which is the best. 2) Saab transform
generally performs better than DCT for most sequences and
QPs. But for small QP, i.e., 22, and some sequences, e.g.,
“FourPeople”, DCT performs better on the decorrelation than
the two-stage Saab transform. 3) One-stage Saab transform is
better than two-stage Saab transform on decorrelation, mainly
because increasing the number of stages in Saab transform will
be beneficial to extract high-level features, but not to reduce
the decorrelation cost C(y). This motivates us to explore
one-stage Saab transform based video coding to improve the
coding efficiency.

III. SAAB TRANSFORM BASED INTRA VIDEO CODING

In this section, Saab transform is applied to video codec to
improve intra video coding efficiency. Firstly, we present the
proposed framework for Saab transform based intra video cod-
ing. Then, intra mode dependent Saab transform kernels are
developed. Finally, three strategies are proposed to integrate
Saab transform to HEVC intra coding for higher efficiency.

A. Framework of Saab Transform based Intra Video Coding

Fig. 3 illustrates the proposed framework of Saab transform
based intra coding, which includes offline learning for Saab
transform kernels, Saab transform based encoder and decoder.
In the figure, the white rectangles are the original coding
modules in HEVC and the blue ones are the newly added
modules for the proposed algorithm.

At the stage of learning Saab transform kernels, the in-
tra prediction block residuals D={xTrain} are collected off-
line from conventional DCT based video encoder. Since the
distribution of the residual data highly depends on the intra
mode [16], all intra modes are divided into n mode sets, Mk,
k ∈ [0, n] and n <= 34 for HEVC. Then, block residuals
D={xTrain} are divided into groups {gk} regarding their intra
modes are whether in Mk or not. A number of Saab transform
kernels {SBT0,...,SBTn} are learned individually based on the
intra mode in Mk and their block residual groups {gk}. Details
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Fig. 4. Ratio of blocks encoded with the intra mode indexed by 0 ∼ 34.

will be presented in Section III-B. Note that this is an offline
training process that various video sequences and settings can
be used to train the Saab transform kernels. The complexity
of the Saab transform training is negligible. Also, the trained
Saab transform kernels are transmitted offline and stored at
client side for inverse transform.

At the encoder side, the learned Saab transform kernels
{SBT0, ...,SBTn} are utilized to transform block residuals
based on the intra mode. For example, SBTk will be used to
transform the block residuals from mode in Mk. There may
be several cases to integrate Saab transform into the video
encoder. One is to replace the DCT with the Saab transform.
The other is to add the Saab transform as an alternative
transform option and compete with the DCT using RD cost
comparison. In the latter case, a flag indicating the choice of
Saab transform and DCT will be encoded and transmitted to
the client for decoding.

At the decoder side, if the conventional DCT is replaced
with Saab transform, based on the intra mode in Mk, the
Saab transform kernel SBTk will be used in the inverse Saab
transform to reconstruct block residuals. Otherwise, based on
the decoded flag and intra mode in Mk, either DCT or SBTk
will be selectively used in the inverse transform. Note that
Saab transform kernels SBTk are loaded offline, thus, the
coding bit is neglected.

B. Intra Mode Dependent Saab Transform

Saab transform is data-driven as it learned from the statis-
tical characteristics of input source. However, the statistical
characteristics of intra prediction block residuals {x} depends
on intra prediction accuracy as well as image texture [37].
Since the angular intra prediction mode has a big impact on
the prediction residuals in a block, it is necessary to learn Saab
transform kernels based on the statistical characteristics of the
angular intra mode. Thus we develop intra mode dependent
Saab transform to maximize the coding performance.

Intra prediction block residuals shall be divided into groups
gk in terms of intra prediction modes Mk, which are then
used to learn Saab transform kernel SBTk. The statistical
characteristics of block residuals from single intra mode are

Fig. 5. Correspondence between intra prediction modes and Saab transform
kernels SBTk .

relatively easier to be represented as compared with those
of multiple intra modes. Thus, Saab transform learned from
residuals of single intra mode, denoted as Fine-Grained Saab
Learning (FGSL), may have better representation performance
than that from multiple intra modes, noted as Coarse-Grained
Saab Learning (CGSL). However, FGSL needs to train SBTk
for each mode, 0 ≤ k ≤ 34. In other words, there are 35 SBTs
for each TU size in HEVC, and the number is even larger for
standards beyond HEVC. Thus, the FGSL drastically increases
the difficulties in codec design. In addition, the ratio of blocks
for each mode distributes unevenly, which may cause some
difficulties in collecting sufficient data for training.

The distributions of 35 intra prediction modes were statisti-
cally analyzed on the number of 8×8 luminance block residu-
als encoded by each of these modes. 100 frames of each video
sequence in {“BasketballDrill”, “FourPeople”, “RaceHorses”}
were encoded with four QPs in {22, 27, 32, 37} in HEVC.
As shown in Fig. 4, block residuals of “Planar”, “DC”,
“Horizontal” and “Vertical” and their neighboring modes have
higher percentages than those of rest modes, which indicates
these modes have higher impacts on the coding efficiency than
the others. Therefore, by considering the coding efficiency
and design complexity, we train Saab transform kernels for
“Planar (0)”, “DC (1)”, “Horizontal (10)” and “Vertical (26)”
and their neighboring modes (8 ∼ 12 and 24 ∼ 28) with FGSL
scheme, shown as in Category B in Table II. Since neighboring
intra angular modes have similar directions, two or more intra
modes can be grouped for training. Saab transform kernels for
the modes in Category A, as shown in Table II, are trained
with CGSL scheme to reduce the number of kernels. 24 Saab
transform kernels in total are trained with FGSL and CGSL
schemes, and the correspondence between intra modes and
SBTk, 0 ≤ k ≤ 23, are illustrated in Fig. 5. The details of the
FGSL and CGSL schemes are:
• CGSL for modes in Category A: Group residual blocks

generated from intra prediction mode ID i and ID i− 1
as one set and train Saab kernel SBTk. Then, SBTk will
be applied to residual blocks from intra mode with ID
i− 1 and i. For example, SBT2 is trained from residual
blocks generated from intra mode 2 and 3.
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TABLE II
TWO TRAINING STRATEGIES FOR MODE DEPENDENT SAAB TRANSFORM.

Category Mode ID Saab Learning Scheme
A 2 ∼ 7, 13 ∼ 23 , 29 ∼ 34 CGSL
B 0 ∼ 1, 8 ∼ 12, 24 ∼ 28 FGSL

• FGSL for modes in Category B: Collect residual blocks
generated from intra prediction mode ID i as one set
and train Saab kernel SBTk. Different from CGSL, the
learned Saab transform SBTk will be only applied to
residual blocks from intra mode ID i. For example, SBT5

is trained from residual blocks generated from intra mode
8. Note that SBT0 and SBT1 are learned from residual
blocks of “Planar” and “DC” mode, respectively.

C. Integration Strategies for Saab Transform

Since Saab transform has good performance on energy
compaction and decorrelation, as analyzed in Subsection II-C,
we propose three integration strategies to apply intra mode
dependent Saab transform to the HEVC codec. Table III
shows these three integration strategies, noted as sI , sII
and sIII . In sI , each intra prediction mode adopts either
Saab transform or DCT in transform coding. Intra modes ID
i ∈ {0 ∼ 7, 13 ∼ 23, 29 ∼ 34} utilize SBTk with index
k∈{0 ∼ 4, 10 ∼ 15, 21 ∼ 23} as their transforms. For intra
modes around the horizontal and vertical directions, i.e. intra
modes ID i ∈ {8 ∼ 12, 24 ∼ 28}, the original DCT is utilized
since the Saab kernel SBTk is not always superior for these
modes. Detailed analysis can be referred to Section IV-B. To
complement Saab transform with DCT, strategy sII in the
middle row of Table III is proposed. In sII , SBTk is applied
to intra modes in {0 ∼ 7, 13 ∼ 23, 29 ∼ 34}. Meanwhile, the
DCT is also activated. The optimal transform is selected from
DCT and SBTk by choosing the lower RD cost. N/A indicates
there is no available SBTk for modes in {8 ∼ 12, 24 ∼ 28}
and DCT is directly used for them. Furthermore, strategy sIII
is proposed to maximize the coding efficiency, as shown in
the bottom row in Table III. SBTk, 0 ≤ k ≤ 23, are applied
to all 35 intra prediction modes, while DCT is also activated.
The optimal transform is selected from SBTk and DCT based
on RD comparison. In strategies sII and sIII , the optimal
transform is selected with RDO from SBTk and DCT. An 1
bit flag shall be added in the bitstream for each TU, where 0/1
indicates using DCT/SBTk, respectively. Note that k in SBTk
is determined by the intra mode according to the learning
scheme. The RD performance gain of Saab transform and
three integration strategies in intra video coding are analyzed
in following sections.

IV. RD PERFORMANCE AND COMPUTATIONAL
COMPLEXITY OF SAAB TRANSFORM BASED INTRA CODING

In this section, RD performance and computational com-
plexity of Saab transform based intra video coding are ana-
lyzed theoretically and experimentally. Firstly, we analyze the
RD cost of Saab transform based intra video coding and two

sufficient conditions are derived while using Saab transform
to improve the RD performance. Then, these two sufficient
conditions are validated individually with coding experiments.
Finally, computational complexity of one-stage Saab transform
is analyzed.

A. Theoretical RD Cost Analysis on Saab Transform

The objective of video coding is to minimize the distor-
tion (D) subject to a given bit rate (R). By introducing
the Lagrangian multiplier λ, the coding optimization can be
formulated by minimizing RD cost J(Q) as [1]

min J(Q), J(Q) = D(Q) + λ ·R(Q), (8)

where Q is quantization step, D(Q) and R(Q) are distortion
and bit rate at given Q. So, it is necessary to analyze D(Q) and
R(Q) of Saab transform based intra coding and compared with
those of DCT based intra coding to validate its effectiveness.

The rate R(Q) and distortion D(Q) of using the Saab
transform are modelled and theoretically analyzed. The bit
rate R can be modelled with the entropy of the transformed
coefficient y. Meanwhile, when the transformed coefficient y
is quantized with quantization step Q, the bit rate R(Q) can
be modelled as its entropy minus logQ, which is [38]

R(Q) ≈ −
∫ +∞

−∞
fy(y) log fy(y)dy − logQ. (9)

To analyze the transformed coefficient y output from Saab
transform, we collected 1000 of 8×8 luminance block residu-
als generated by “Planar” mode from encoding “FourPeople”
in HEVC. Histograms of transformed coefficients from Saab
at locations (0,2) and (5,2), are presented in Fig. 6. We can
observe that distributions of transformed coefficients from
Saab generally conform Laplacian and Gaussian distribution-
s, which are denoted as ySaab ∼ Laplace(µySaab , σySaab)
and ySaab ∼ N(µySaab , σySaab). Since the Laplacian model
achieves a higher accuracy than the Gaussian model, Laplacian
distribution is finally used in modelling the Saab transformed

coefficient y, i.e., fy(y) =
√

2σye
−

√
2

σy
|y|. By applying fy(y)

to Eq. 9, we can obtain the rate R(Q) as

R(Q) ≈ log
√

2eσy
Q

. (10)

Since uniform quantizer is used to quantize the transformed
coefficient y, the range of y will be partitioned into an infinite
number of intervals It = (qt, qt+1). y in the interval It will
be mapped to st after quantization. As st is independent with
t, given the quantization step size Q, the distortion caused by
quantization D(Q) can be calculated as [39]

D(Q) =

+∞∑
−∞

∫ st+0.5Q

st−0.5Q

(y − st)2
fy(y)dy, (11)

where Q is the quantization step size. As the distribution of
the transformed coefficient y after uniform quantization still

obey Laplacian distribution, i.e., fy(y) =
√

2σye
−

√
2

σy
|y|, the

distortion D(Q) can be approximated as [40]

D(Q) ≈ σ2
y

Q2

12σ2
y+Q2 . (12)
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TABLE III
INTRA MODE DEPENDENT SAAB TRANSFORM SET {SBTk} AND INTEGRATION STRATEGIES.

Integration
Strategies Transform Intra Mode ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

sI 1 SBT / DCT 0 1 2 2 3 3 4 4 DCT 10 10 11 11 12 12 13 13 14 14 15 DCT 21 21 22 22 23 23

sII 2 SBT index 0 1 2 2 3 3 4 4 N/A 10 10 11 11 12 12 13 13 14 14 15 N/A 21 21 22 22 23 23
DCT DCT

sIII 2 SBT index 0 1 2 2 3 3 4 4 5 6 7 8 9 10 10 11 11 12 12 13 13 14 14 15 16 17 18 19 20 21 21 22 22 23 23
DCT DCT

1 Either DCT or SBTk is used depending on the intra mode.
2 The optimal transform is selected from DCT and SBTk with RDO. One bit signalling flag is transmitted to indicate the type, where 0 / 1 indicate DCT / SBTk .
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norm
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−30 −20 −10 0 10 20 30
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0.150

0.175 laplace
norm

(b)

Fig. 6. Distributions of transformed coefficients via Saab transform for 8×8
block residuals generated by “Planar” mode. (a) Transformed coefficient at
location (0,2) from Saab, (b) Transformed coefficient at location (5,2) from
Saab.

Therefore, the RD cost of the Saab transform based intra
coding scheme can be calculated as

J ≈ κy =

 σ2
y

Q2

12σ2
y+Q2 + λ · log

√
2eσy
Q σy >

Q√
2e

σ2
y

Q2

12σ2
y+Q2 σy ≤ Q√

2e

,

(13)
where the right part is defined as κy for further illustration.
When σy ≤ Q√

2e
, R(Q) = 0, so J ≈ κy = σ2

y
Q2

12σ2
y+Q2 .

Similarly, we also analyze distributions of the transformed
coefficients from DCT, as shown in Fig. 7. These distributions
of transform coefficients of DCT are closer to Laplacian
distribution yDCT ∼ Laplace(µyDCT , σyDCT ) than Gaussian
distribution yDCT ∼ N(µyDCT , σyDCT ). Therefore, Eq.13 can
also be derived for DCT based intra coding. To differentiate
Saab transform from DCT, transformed coefficients of Saab
are noted as ySaab and those of DCT are noted as yDCT . κy for
Saab and DCT are denoted as κySaab and κyDCT . Therefore,
for block residuals, RD gain can be achieved if the transformed
coefficient of Saab transform satisfies condition

κySaab < κyDCT . (14)

Apply Eq.13 to Eq.14, we can obtain an inequality that
relates to σ2

ySaab
, σ2

yDCT and quantization steps Q. For sim-
plicity, we find Eq. 14 is satisfied by all quantization step Q
when the variances of the transformed coefficients, σ2

ySaab
and

σ2
yDCT , satisfy condition

σ2
ySaab

< σ2
yDCT . (15)

This inequality is a sufficient but not necessary condition
for Eq.14, which is more critical. It means transform that

−40 −20 0 20 40
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0.08 laplace
norm
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Fig. 7. Distributions of DCT transformed coefficients for 8 × 8 residual
blocks generated by “Planar” mode. (a) Transformed coefficient at location
(0,2) from DCT, (b) Transformed coefficient at location (5,2) from DCT.

minimizes the output variances of transformed coefficients will
improve the RD performance of a codec. Both conditions in
Eq.14 and Eq.15 will be experimentally analyzed in detail in
the following subsection so as to testify the effectiveness of
Saab transform.

B. Experimental RD Cost Analysis on Saab Transform

Two conditions in Eq.14 and Eq.15 were analyzed by com-
paring σ2

ySaab
and σ2

yDCT , κySaab and κyDCT of transformed
coefficients from Saab and DCT, respectively.

In the experiment, Saab training configurations were gen-
erally the same as those in Section II-C. Saab transform
kernel SBT1 was learned for intra mode “Planar”. Then,
the learned kernel SBT1 was applied to transform “Planar”
mode blocks. Three sequences with different resolutions, i.e.
“PeopleOnStreet” at 2560×1600, “Johnny” at 1280×720 and
“RaceHorses” at 416×240 , were tested when QP ∈ {22, 27,
32, 37}. Thousands of “Planar” mode residuals were randomly
collected after intra prediction, which were transformed with
SBT1 and DCT to compute κySaab and κyDCT . To quantita-
tively analyze the difference between κySaab and κyDCT , ∆κ
is defined as

∆κ = κySaab − κyDCT , (16)

where negative ∆κ indicates a better RD performance of using
Saab transform as compared with DCT, while positive ∆κ
indicates a worse RD performance. Table IV shows κySaab ,
κyDCT and ∆κ for different QPs and video sequences. We
can observe that κySaab is generally smaller than κyDCT , and
the average ∆κ are 0.0001, -0.0001, -0.0010 and -0.0045 when
QP is 22, 27, 32 and 37, respectively. It means for the “Planar”
mode the Saab transform can achieve better RD performance
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TABLE IV
COMPARISONS BETWEEN κySaab AND κyDCT FOR 8×8 LUMINANCE (Y) BLOCK RESIDUALS FROM “PLANAR” MODE.

QP 22 27 32 37
Sequence κyDCT κySaab ∆κ κyDCT κySaab ∆κ κyDCT κSaab ∆κ κyDCT κySaab ∆κ

PeopleOnStreet 0.1035 0.1036 0.0001 0.6765 0.6764 -0.0001 4.3067 4.3052 -0.0015 21.6978 21.6912 -0.0066
RaceHorses 0.1263 0.1264 0.0001 0.9002 0.9001 -0.0001 5.3745 5.3743 -0.0002 22.6707 22.6658 -0.0049

Johnny 0.0751 0.0751 0.0000 0.2819 0.2818 -0.0001 1.3996 1.3982 -0.0014 11.1232 11.1211 -0.0021
Average - - 0.0001 - - -0.0001 - - -0.0010 - - -0.0045

TABLE V
COMPARISONS BETWEEN σ2

ySaab
AND σ2

yDCT
FOR 8×8 BLOCK RESIDUALS WHEN QP IS 37. FOUR INTRA PREDICTION MODES “PLANAR”, “DC”,

“HORIZONTAL” AND “VERTICAL” ARE TESTED.

Intra mode Planar DC Horizontal Vertical
Sequence σ2

yDCT
σ2
ySaab

∆σ2 σ2
yDCT

σ2
yDCT

∆σ2 σ2
yDCT

σ2
ySaab

∆σ2 σ2
yDCT

σ2
ySaab

∆σ2

PeopleOnStreet 24.899 24.891 -0.008 32.741 32.735 -0.006 32.419 31.416 -1.003 21.673 21.673 0.000
RaceHorses 35.890 35.884 -0.006 54.590 54.589 -0.001 74.434 74.443 0.009 53.016 53.031 0.015

Johnny 11.908 11.906 -0.002 18.887 18.797 -0.09 30.122 30.119 -0.003 11.460 11.461 0.001
Average - - -0.005 - - -0.032 - - -0.332 - - 0.005

on average when QP are 27, 32 and 37 and a little worse than
DCT on RD performance when QP is 22. So, Saab transform
is actually more effective than DCT on average.

In addition, σ2
ySaab

and σ2
yDCT were also analyzed and

compared to validate the effectiveness of Saab transform.
Four Saab transforms were learned from 80K 8×8 luminance
block residuals for intra prediction modes in {“Planar”, “D-
C”, “Horizontal”, “Vertical”}, respectively. Then, these Saab
transforms were applied to block residuals of {“Planar”, “DC”,
“Horizontal”, “Vertical”} correspondingly. As a comparison,
the same set of block residuals were also transformed by DCT.
Then, σ2

ySaab
and σ2

yDCT were computed from the transformed
coefficients of Saab transform and DCT. Four intra modes
{“Planar”, “DC”, “Horizontal”, “Vertical”} and three video
sequences {“PeopleOnStreet”, “RaceHorses”, “Johnny”} were
tested. QP was fixed as 37. The difference ∆σ2 between σ2

ySaab
and σ2

yDCT is defined as

∆σ2 = σ2
ySaab

− σ2
yDCT , (17)

where negative ∆σ2 indicates a better RD performance of
using Saab transform and positive ∆σ2 indicates a worse RD
performance of using Saab transform as compared with DCT.
σ2
ySaab

and σ2
yDCT are variances of transformed coefficients

from Saab transform and DCT, respectively. Table V shows
σ2
ySaab

, σ2
yDCT and ∆σ2 for four different intra modes. We

can observe that the average ∆σ2 of intra prediction modes
“Planar”, “DC”, “Horizontal” and “Vertical” are -0.005, -
0.032, -0.332 and 0.005, respectively. It indicates the Saab
transform performed better than DCT for intra prediction
modes “Planar”, “DC” and “Horizontal” on average, but a little
inferior to DCT for “Vertical” mode on average. In fact, other
intra modes were compared and Saab transform performed
better than DCT for most modes and sequences. Therefore,
Saab transform is able to improve the video coding efficiency.

Overall, Saab transform has better performance than DCT
for different sequences, QPs, and intra modes on average,
which can be used to replace DCT to improve the coding
efficiency. However, Saab transform is inferior to DCT in some
cases, such as the cases when QP is 22 or intra prediction mode

is “Vertical”. Therefore, to maximize the coding efficiency, an
alternative way is to combine Saab transform with DCT and
select the optimal one with RD cost comparison.

C. Computational Complexity Analysis for Saab Transform

We measure the transform complexity via the number of
float-point multiplications or divisions. Practical complexity
is desired to be explored in the future. So, the computational
complexity of applying DCT to the block of size M × N
is O(2MN2 + 2M2N). Saab transform for blocks of size
M × N is a little different from DCT at the computational
complexity. It requires an extra 3MN float-point computations
in one-stage Saab transform before mapping one block of
size M ×N to one DC coefficient and M ×N − 1 AC
coefficients. Therefore, the computational complexity of one-
stage Saab transform is O(3MN + 2(MN)2). Theoretically,
the complexity of DCT is relatively lower than the one-stage
Saab transform. The ICT is low complexity approximation of
DCT, which is implemented with integer arithmetic to avoid
the float-point multiplication. Thus, the complexity of ICT in
HEVC is much lower than that of DCT as well as one-stage
Saab transform computed in float-point arithmetic.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the RD performance of Saab transform in
comparison with DCT for intra video coding in HEVC. In
learning Saab transform, 24 of the Saab transform kernels,
noted as SBTk, 0 ≤ k ≤ 23, were learned offline from
around 80K block residuals separately. These 80K block
residuals were collected from encoding the frames of four
video sequences, i.e. “PeopleOnStreet” at 2560×1600, “Bas-
ketballDrill” at 832×480, “BasketballPass” at 416×240 and
“FourPeople” at 1280×720, with QP ∈ {22, 27, 32, 37}. The
Saab transform based intra video codecs were implemented on
HEVC test model version 16.9 (HM16.9) and Saab transform
was implemented with C++. The coding experiments were
performed under All Intra (AI) configuration, where four QPs
∈ {22, 27, 32, 37} were tested. Note that video sequences
of Class B were clipped from 1920×1080 to 1920×1072



10

TABLE VI
BDBR OF SAAB TRANSFORM BASED INTRA CODING WHERE DCT IS REPLACED WITH SBTk INDIVIDUALLY FOR EACH INTRA MODE.

Transform set with one SBT s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23
SBT index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Intra prediction modes 0 1 2,3 4,5 6,7 8 9 10 11 12 13,14 15,16 17,18 19,20 21,22 23 24 25 26 27 28 29,30 31,32 33,34
Class Sequence BDBR (%)

A Traffic -0.21 -0.06 -0.25 -0.61 -0.41 -0.14 0.04 0.02 0.17 0.05 -0.01 0.00 0.03 -0.04 -0.03 0.02 0.04 0.10 0.11 -0.01 0.03 0.05 -0.07 -0.15
PeopleOnStreet * -0.42 -0.14 -0.12 -0.29 -0.28 -0.08 0.14 0.08 0.09 0.04 0.03 -0.24 0.04 0.01 -0.08 0.16 0.14 0.06 0.06 0.10 -0.05 0.12 -0.02 -0.20

C BQMall -0.19 -0.08 -0.28 -0.04 -0.06 -0.14 0.15 0.02 0.13 -0.09 -0.02 -0.18 -0.26 -0.34 -0.15 -0.11 -0.05 0.23 1.02 0.09 -0.01 -0.02 -0.23 -0.19
BaketballDrill * -0.13 0.08 -0.50 -0.51 -0.69 -0.37 -0.17 -0.22 -0.07 0.03 -0.42 -0.65 -3.81 -2.34 -1.65 -0.50 -0.43 -0.34 -0.28 -0.21 -0.43 -0.18 -0.05 0.11

D BQSquare -0.32 -0.23 -0.20 -0.26 -0.06 -0.15 -0.19 -0.12 -0.26 -0.08 -0.11 -0.23 -0.19 -0.21 -0.12 -0.22 0.01 -0.04 0.07 0.04 -0.14 -0.16 -0.12 -0.11
BaketballPass * -0.21 -0.16 -0.04 -0.20 -0.17 0.15 0.00 0.00 0.15 0.35 -0.06 -0.03 -0.50 -0.10 -0.45 -0.13 -0.25 -0.04 0.21 -0.22 -0.07 -0.25 -0.24 -0.11

E KristenAndSara 0.34 0.08 -0.05 -0.24 -0.01 0.08 0.06 0.07 0.22 -0.06 0.12 -0.38 0.10 -0.23 -0.21 -0.06 0.20 0.25 0.66 0.72 -0.01 -0.12 0.04 0.02
FourPeople * -0.16 0.02 -0.17 -0.25 0.00 0.00 -0.09 0.15 0.16 -0.09 0.07 -0.23 -0.23 -0.18 -0.35 -0.06 -0.10 0.47 -0.04 0.20 -0.01 -0.02 -0.23 -0.25

Average -0.16 -0.06 -0.20 -0.30 -0.21 -0.08 -0.01 0.00 0.07 0.02 -0.05 -0.24 -0.60 -0.43 -0.38 -0.11 -0.05 0.09 0.23 0.09 -0.09 -0.07 -0.11 -0.11
* Partial blocks of these video sequences were utilized to learn the Saab transforms.

and video sequences in Class A were encoded and decoded
conforming to the main profile at level 4 for alignment.

All experiments were carried out in a workstation with
3.3GHz CPU and 96.0GB memory, Windows 10 operating
system. Peak Signal-to-Noise Ratio (PSNR) and bit rate were
utilized to evaluate the video quality and bit rate of the
proposed Saab transform based intra video coding while
Bjønteggard Delta PSNR (BDPSNR), Bjønteggard Delta Bit
Rate (BDBR) [41] were adopted to represent coding gain.

A. Coding Efficiency Analysis

We evaluated the coding performance of Saab transform
based intra video coding in three phases. In the first and
second phases, CU size was fixed as size of 16×16 and
TU size was fixed as 8×8 for both proposed schemes and
benchmark HEVC so as to analyze the performance of 8×8
Saab transform as compared with 8×8 DCT. Firstly, the coding
performance of each Saab transform kernel was validated one-
by-one. In this experiment, DCT was replaced by the SBTk for
only one intra mode and the rest intra modes remained DCT,
which had 24 combinations and denoted as sk, k ∈ [0, 23].
Eight sequences were encoded for each sk. Table VI shows
the coding performance for proposed Saab transform based
intra video codecs corresponding to each sk as compared
with the original DCT based codec. A negative BDBR value
indicates coding gain and a positive value means coding loss.
We have three observations: 1) BDBR from -0.01% to -0.60%
can be achieved on average for most intra modes. 2) SBT12

can achieve the most significant BDBR gain, which is -0.60%
on average, when it is applied to block residuals generated
by intra mode 17 and 18. 3) BDBR values are positive for
intra modes around horizontal and vertical directions, where
mode ID i ∈ {10, 11, 12, 25, 26, 27}. It indicates that the
RD performance of SBTk is inferior to the DCT on average
for these modes. Based on these results, if without RDO
competition between DCT and Saab, we propose not to replace
DCT with SBTk for intra modes in {8 ∼ 12, 24∼28}, i.e.,
integration strategy sI . If with RDO competition, sII and sIII
in Table III are proposed.

Secondly, in addition to evaluate each SBTk individual-
ly, the joint RD performance of using all SBTk were also
evaluated in Saab transform based intra coding, which had

three strategies sI , sII and sIII . Twenty-three video sequences
with various contents and resolutions in {416×240, 832×480,
1280×720, 1920×1080, 2560×1600} were encoded with the
proposed Saab transform based intra video codec and the
benchmark HEVC in the coding experiment. RDO Quanti-
zation (RDOQ) was disabled. 100 frames were encoded for
each test sequence. Table VII shows the RD performance
of the Saab transform based intra video codec as compared
with the state-of-the-art DCT based HEVC codec. We can
observe that three schemes sI , sII and sIII can achieve
BDBR gain -1.41%, -2.59% and -3.07% on average. Scheme
sI can improve the coding efficiency for most sequences
while schemes sII and sIII can improve the BDBR for all
test sequences. In addition, maximum BDBR gains are up
to -9.10%, -9.72% and -10.00% for schemes sI , sII and
sIII , respectively, which is significant and promising. The
competition between Saab transform and DCT with RDO
improves the coding performance of replacing DCT with Saab
transforms, i.e., sI , with a large margin.

Thirdly, we also performed the coding experiments when
fully flexible CU/PU/TU size selection and RDOQ were
enabled based on the common test conditions. The proposed
Saab transform was applied to 8×8 TU with RDO comparison,
i.e. sIII , and transform for the rest TUs were the same as the
original HEVC. The original HEVC and CNN-based nonlinear
transform [26], denoted as Yang’s scheme, were used for
comparison. Note that in Yang’s scheme [26], the CNN based
transform was only applied to 8×8 TU in intra coding, which
is the same as the proposed scheme. Table VIII shows RD
performances of the proposed sIII and Yang’s scheme [26] as
they were compared with the original HEVC in intra coding.
We can observe that Yang’s scheme is able to achieve BDBR
from 0.01 % to -1.79%, and -0.75% on average, for the test
sequences from Class A to Class E. For the proposed sIII ,
it achieves BDBR from -0.40 % to -6.09%, and -1.78% on
average, which outperforms that of Yang’s scheme. While
including screen content sequences from Class F, it achieves
-1.80% BDBR on average. It demonstrates that the proposed
Saab transform has better decorrelation ability for transform
residual as compared with DCT. Also, the proposed Saab
transform is beter than CNN based transform due to more
fine-grained prediction mode dependent design.
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TABLE VII
RD PERFORMANCES AND COMPUTATIONAL COMPLEXITY OF SAAB TRANSFORM BASED INTRA VIDEO CODEC AS COMPARED WITH THE HEVC CODEC.

Transform set sI sII sIII

Class Sequence BDBR
(%)

BD
PSNR
(dB)

∆TEnc
(%)

∆TDec
(%)

BDBR
(%)

BD
PSNR
(dB)

∆TEnc
(%)

∆TDec
(%)

BDBR
(%)

BD
PSNR
(dB)

∆TEnc
(%)

∆TDec
(%)

A

NebutaFestival 0.25 -0.019 212.9 159.3 -2.13 0.154 235.9 136.1 -2.30 0.167 267.4 139.3
StreamLocomotive 0.87 -0.045 224.3 153.8 -1.40 0.074 254.3 131.4 -1.69 0.089 290.8 134.0

Traffic -0.88 0.047 216.2 143.4 -2.06 0.112 236.2 125.1 -2.81 0.154 295.4 137.0
PeopleOnStreet * -1.07 0.061 225.2 148.7 -2.37 0.137 260.2 127.9 -3.00 0.174 318.8 137.6

B

Kimono 0.74 -0.026 213.9 158.2 -0.97 0.033 251.0 141.8 -1.19 0.040 291.1 136.4
ParkScene -0.11 0.05 198.1 144.8 -1.74 0.080 236.9 125.8 -2.07 0.096 285.9 133.7

Cactus -0.94 0.036 212.6 156.9 -2.28 0.089 232.4 126.0 -2.91 0.115 296.1 139.5
BQTerrace -0.37 0.008 203.7 136.8 -1.76 0.105 230.4 124.3 -2.32 0.136 290.4 133.0

BasketballDrive -0.62 0.012 193.2 132.2 -1.60 0.046 223.3 126.5 -2.24 0.065 287.2 125.8

C

RaceHorses -0.91 0.060 217.1 161.4 -2.34 0.158 249.8 137.8 -2.67 0.180 296.7 142.7
PartyScene -1.18 0.091 198.3 145.9 -1.99 0.157 238.7 133.0 -2.69 0.214 296.9 144.0

BQMall -0.19 0.012 195.0 139.2 -1.38 0.083 231.6 125.0 -2.03 0.124 297.8 134.1
BaketballDrill * -9.10 0.463 212.6 155.4 -9.72 0.498 265.0 157.4 -10.00 0.514 273.3 150.5

D

RaceHorses -2.37 0.158 199.9 169.7 -3.45 0.233 268.0 160.4 -3.87 0.262 303.2 161.5
BlowingBubbles -2.19 0.132 195.5 197.5 -3.12 0.190 265.5 157.2 -3.78 0.232 292.6 162.9

BQSquare -0.68 0.058 188.2 141.8 -1.87 0.171 243.6 152.9 -2.47 0.227 304.0 146.3
BaketballPass * -0.34 0.019 175.7 139.9 -1.41 0.084 223.0 155.5 -2.04 0.124 277.2 119.4

E
Johnny -1.38 0.062 184.6 120.2 -2.20 0.101 226.4 120.2 -2.51 0.116 256.5 128.9

KristenAndSara -1.15 0.061 198.6 131.6 -1.89 0.103 218.6 117.5 -2.47 0.135 271.9 122.7
FourPeople* -0.99 0.058 199.6 135.4 -1.89 0.109 228.1 120.5 -2.58 0.149 269.4 122.6

F
BasketballDrillText -7.45 0.413 223.1 162.6 -8.10 0.453 259.4 157.5 -8.39 0.470 275.4 151.2

ChinaSpeed -0.43 0.040 181.3 126.3 -1.14 0.106 227.8 118.7 -1.66 0.156 262.6 117.0
SlideShow -1.89 0.176 184.8 147.0 -2.70 0.262 213.0 134.4 -2.83 0.272 240.9 140.3

Average -1.41 0.082 202.4 147.6 -2.59 0.154 240.0 134.2 -3.07 0.183 284.4 138.4
* Partially utilized in learning the Saab transforms.

TABLE VIII
RD AND COMPLEXITY OF THE PROPOSED SAAB BASED INTRA CODING AS

FULLY FLEXIBLE CU/PU/TU SIZE SELECTION ENABLED,[UNIT:%].

Class Sequence
Yang’s

scheme [26] Proposed sIII

BDBR BDBR ∆TEnc ∆TDec

A

NebutaFestival -0.37 -0.65 172.9 104.5
StreamLocomotive -0.76 -0.64 174.8 104.3

Traffic -1.37 -2.52 163.2 113.0
PeopleOnStreet 0.01 -2.37 171.3 112.5

B

Kimono -0.29 -0.57 170.1 101.3
ParkScene -1.79 -1.66 164.9 108.8

Cactus -1.14 -1.76 165.7 108.5
BQTerrace -0.75 -1.29 165.6 106.2

BasketballDrive -0.42 -1.65 164.2 106.2

C

RaceHorses -1.08 -1.72 169.2 112.5
PartyScene -0.40 -1.10 170.1 112.2

BQMall -0.78 -1.17 169.2 107.8
BaketballDrill -0.61 -6.09 167.8 131.8

D

RaceHorses -1.16 -2.42 172.7 132.5
BlowingBubbles -0.81 -2.26 162.7 134.2

BQSquare -0.57 -0.40 156.8 115.9
BaketballPass -0.48 -1.21 171.4 118.2

E
Johnny -0.75 -1.74 162.8 101.6

KristenAndSara -0.73 -1.89 164.2 108.6
FourPeople -0.83 -2.49 166.9 112.2

Average -0.75 -1.78 167.3 112.6

F
BasketballDrillText - -5.13 170.9 131.8

ChinaSpeed - -0.52 167.8 102.0
SlideShow - -0.17 159.7 102.6

Average of all seqs. - -1.80 167.2 112.6

B. Coding Complexity Analysis

In addition to the coding efficiency, the coding complexity
of the proposed Saab transform based intra video coding was
also analyzed. The precision of the Saab transform kernels is
stored and computed with 20 decimal digits, and the storage
space for these 24 8×8 one-stage Saab transform kernels
for codec is about 3 MB. The ratios of the computational

complexities of the proposed Saab transform based intra
video encoder/decoder to those of the DCT based anchor
encoder/decoder are defined as

∆TEnc = 1
4

4∑
i=1

TEnc,Saab(QPi)
TEnc,DCT (QPi)

× 100%

∆TDec = 1
4

4∑
i=1

TDec,Saab(QPi)
TDec,DCT (QPi)

× 100%

, (18)

where TEnc,Saab(QPi) and TDec,Saab(QPi) are encoding
and decoding time for QPi in Saab transform based intra
video codec, and TEnc,DCT (QPi) and TDec,DCT (QPi) are
encoding/decoding time for QPi in DCT based intra video
codec. Note that the DCT was implemented with ICT and
butterfly operation in DCT based intra video codec. In Table
VII, ∆TEnc of intra video codecs with schemes sI , sII and
sIII are 202.4%, 240.0% and 284.4% on average respectively.
There are three reasons. Firstly, the computational complexity
of Saab transform is a little higher than that of DCT, as
illustrated in Section IV-C. Secondly, the DCT was optimized
in implementation and Saab transform was not. In fact, the
implementation of Saab transform can be optimized in future.
Thirdly, the complexity of the strategies sII and sIII further
increases because the optimal transform was selected based on
the RD competition between Saab and DCT.

In addition, the decoding complexity of Saab transform
based video decoder was also evaluated. The ∆TDec of sI ,
sII and sIII are 147.6%, 134.2% and 138.4% on average
respectively. Similarly, the complexity is mainly brought by
the implementation of Saab transform. The decoding time of
sII and sIII are reduced as compared with sI because partial
blocks were decoded with DCT in sII and sIII , which had
lower computational complexity than Saab transform.
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Fig. 8. BDBR of sIII with Saab transforms of different decimal digits.

Moreover, Table VIII shows the coding complexities of
the proposed sIII as compared with the original HEVC,
where fully flexible CU/PU/TU size selection and RDOQ
were enabled. We can observe that ∆TEnc and ∆TDec of the
proposed sIII schemes are 167.2% and 112.6% on average,
respectively, which are lower than the coding complexities in
Table VII. The main reason is that the encoding complexity
of the original HEVC is significantly increased as flexible
CU/PU/TU size selection was enabled. While at the decoder
side, the decoding complexity of the sIII reduced since only
partial CUs were decoded with Saab transfrom.

C. RD Impacts from Computational Precision

In this experiment, we evaluated the RD impacts from
different precisions in performing Saab transform. Video se-
quences “Traffic” and “BQMall” were encoded by Scheme
sIII with different precisions, i.e., decimal digit is set as 1,
2, 3, 5 and 20, respectively. Fig. 8 shows the BDBR of sIII
while the Saab transform is computed with different decimal
digits. We can observe that BDBR for “Traffic” and “BQMall”
were converged from -2.35% and -1.72% to -2.80% and -
2.01% as the number of decimal digits increases from 2 to 3.
Increasing the decimal digits from 3 to 5 can achieve BDBR as
-2.81% and -2.03% for “Traffic” and “BQMall”, respectively.
The BDBR gain becomes saturated when the precision is
larger than 3 decimal digits. Accordingly, precision with 3
to 5 decimal digits is recommended for the one-stage Saab
transform.

D. Ratio of Blocks using Saab Transform

We analyzed the ratio of 8×8 blocks using SBTk as the
optimal transform. This ratio is defined as

PSaab(QPi) =
nSaab(QPi)

nTotal(QPi)
× 100%, (19)

where nSaab(QPi) is the number of 8×8 blocks using SBTk
as the optimal transform at QPi. nTotal(QPi) is the total
number of encoded 8×8 blocks at QPi. Eleven different video
sequences were encoded by the proposed sIII scheme. Four
QPs were tested, i.e., QP ∈ {22, 27, 32, 37 }. Table IX shows
the ratio PSaab(QPi) for different test sequences and QPs. We
can observe that the ratio of blocks that select SBTk as the

TABLE IX
RATIO OF BLOCKS ENCODED WITH sIII .

Class Sequence name
PSaab(QPi) (%)
QPi Average22 27 32 37

A Traffic 43.72 43.06 37.93 28.66 38.34
PeopleOnStreet 43.21 41.79 36.07 31.80 38.22

B ParkScene 43.27 35.36 34.21 39.24 38.02
Cactus 48.83 41.86 33.70 32.43 39.20

C PartyScene 50.77 48.10 45.33 42.21 46.60
BasketballDrill 79.20 83.81 86.70 85.89 83.90

D RaceHorses 49.68 50.57 55.97 64.70 55.23
BQSquare 40.38 45.51 43.06 34.68 38.26

E KristenAndSara 33.73 19.79 15.26 11.21 20.00
FourPeople 36.18 25.57 23.05 21.67 26.61

F BasketballDrillText 78.77 74.52 76.55 90.34 80.04
Average 49.60 46.36 44.35 43.89 46.05

optimal transform with RDO is 46.05% on average. It means
the Saab transform is more effective than DCT for almost half
amount of blocks. In addition, we can also observe that the
average ratios reach 80.04% and 83.90%, respectively when
encoding “BasketballDrill” and “BasketballDrillText”. For the
worst case, the ratio is from 11.21% to 33.73 %, and 20.00%
on average, when encoding “KristenAndSara”. Fig. 9 shows
the blocks using Saab transform and DCT in the proposed sIII
scheme while encoding the first frame of “BasketballDrillText”
(the best case) and “KristenAndSara”(the worst case). We can
observe that there are a large proportion of blocks selecting
Saab transform (blocks in white) for “BasketballDrillText”
while the ratio reduces for “KristenAndSara”. It is because
“KristenAndSara” has a large proportion of smooth regions,
whose residuals from intra prediction are already sufficient
small. Overall, the Saab transform is highly effective.

VI. CONCLUSIONS

Learning based transform is able to capture the statistical
characteristics of video contents, which is superior to the fixed
Discrete Cosine Transform (DCT). In this work, learning based
transform design is formulated as an optimization problem to
maximize the energy compaction or decorrelation capability.
Then, we propose a framework of Subspace approximation
with adjusted bias (Saab) transform based intra coding, which
includes intra mode dependent Saab transform learning and
three integration strategies. And then, rate-distortion perfor-
mance of one-stage Saab transform over DCT for intra video
coding is theoretically analyzed and experimentally verified.
Finally, extensive experiments shows that the proposed Saab
transform based intra coding can significantly improve the
coding efficiency, which proves the effectiveness and its ap-
plicability to advanced standards.
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